Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting
-
Published:2018-09-11
Issue:9
Volume:11
Page:5153-5166
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Chen BiyanORCID, Dai Wujiao, Liu Zhizhao, Wu LixinORCID, Kuang Cuilin, Ao Minsi
Abstract
Abstract. Surface pressure (Ps) and weighted mean temperature (Tm) are two necessary variables for the accurate retrieval of precipitable water vapor (PWV) from Global Navigation Satellite System (GNSS) zenith total delay (ZTD) estimates. The lack of Ps or Tm information is a concern for those GNSS sites that are not collocated with meteorological sensors. This paper investigates an alternative method of inferring accurate Ps and Tm at the GNSS station using nearby synoptic observations. Ps and Tm obtained at the nearby synoptic sites are interpolated onto the location of the GNSS station by performing both vertical and horizontal adjustments, in which the parameters involved in Ps and Tm calculation are estimated from ERA-Interim reanalysis profiles. In addition, we present a method of constructing high-quality PWV maps through vertical reduction and horizontal interpolation of the retrieved GNSS PWVs. To evaluate the performances of the Ps and Tm retrieval, and the PWV map construction, GNSS data collected from 58 stations of the Hunan GNSS network and synoptic observations from 20 nearby sites in 2015 were processed to extract the PWV so as to subsequently generate the PWV maps. The retrieved Ps and Tm and constructed PWV maps were assessed by the results derived from radiosonde and the ERA-Interim reanalysis. The results show that (1) accuracies of Ps and Tm derived by synoptic interpolation are within the range of 1.7–3.0 hPa and 2.5–3.0 K, respectively, which are much better than the GPT2w model; (2) the constructed PWV maps have good agreements with radiosonde and ERA-Interim reanalysis data with the overall accuracy being better than 3 mm; and (3) PWV maps can well reveal the moisture advection, transportation and convergence during heavy rainfall.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Ahrens, C. and Samson, P.: Extreme weather and climate, 1 Edn., 22 February 2010, Brooks Cole, United States of America, 2011. 2. Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., and Heck, B.: Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data, IEEE Trans. Geosci. Remote Sens., 53, 3764–3771, https://doi.org/10.1109/TGRS.2014.2382713, 2015. 3. Alshawaf, F., Balidakis, K., Dick, G., Heise, S., and Wickert, J.: Estimating trends in atmospheric water vapor and temperature time series over Germany, Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, 2017. 4. Askne, J. and Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data, Radio Sci., 22, 379–386, 1987. 5. Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|