Abstract
Abstract. Floe size distribution (FSD) has become a parameter of great interest in observations of sea ice because of its importance in affecting climate change, marine ecosystems, and human activities in the polar ocean. A most effective way to monitor FSD in the ice-covered regions is to apply image processing techniques to airborne and satellite remote sensing data, where the segmentation of individual ice floes is a challenge in obtaining FSD from remotely sensed images. In this study, we adopt a deep learning (DL) semantic segmentation network to fast and adaptive implement the task of ice floe instance segmentation. In order to alleviate the costly and time-consuming data annotation problem of model training, classical image processing technique is applied to automatically label ice floes in local-scale marginal ice zone (MIZ). Several state-of-the-art (SoA) semantic segmentation models are then trained on the labelled MIZ dataset and further applied to additional large-scale optical Sentinel-2 images to evaluate their performance in floe instance segmentation and to determine the best model. A post-processing algorithm is also proposed in our work to refine the segmentation. Our approach has been applied to both airborne and high-resolution optical (HRO) satellite images to derive acceptable FSDs at local and global scales.
Funder
HORIZON EUROPE European Innovation Council
Subject
Earth-Surface Processes,Water Science and Technology
Reference70 articles.
1. Copernicus Open Access Hub: https://scihub.copernicus.eu, last access: 20 December 2023. a
2. Kaggle Datasets: https://www.kaggle.com/datasets, last access: 20 December 2023. a
3. Badrinarayanan, V., Kendall, A., and Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE T. Pattern Anal., 39, 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615, 2017. a, b, c
4. Banfield, J.: Automated tracking of ice floes: A stochastic approach, IEEE T. Geosci. Remote, 29, 905–911, https://doi.org/10.1109/36.101369, 1991. a
5. Banfield, J. D. and Raftery, A. E.: Ice floe identification in satellite images using mathematical morphology and clustering about principal curves, J. Am. Stat. Assoc., 87, 7–16, https://doi.org/10.2307/2290446, 1992. a