Variability of mineral dust deposition in the western Mediterranean basin
and south-east of France
-
Published:2016-07-18
Issue:14
Volume:16
Page:8749-8766
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Vincent Julie, Laurent Benoit, Losno RémiORCID, Bon Nguyen Elisabeth, Roullet Pierre, Sauvage Stéphane, Chevaillier Servanne, Coddeville Patrice, Ouboulmane Noura, di Sarra Alcide Giorgio, Tovar-Sánchez AntonioORCID, Sferlazzo Damiano, Massanet Ana, Triquet SylvainORCID, Morales Baquero Rafael, Fornier Michel, Coursier Cyril, Desboeufs Karine, Dulac François, Bergametti Gilles
Abstract
Abstract. Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than 1 year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA (Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie in French) have been deployed in the western Mediterranean region during 1 to 3 years depending on the station. The sites include, from south to north, Lampedusa, Majorca, Corsica, Frioul and Le Casset (southern French Alps). Deposition measurements are performed on a common weekly period at the five sites. The mean dust deposition fluxes are higher close to the northern African coasts and decrease following a south–north gradient, with values from 7.4 g m−2 year−1 in Lampedusa (35°31′ N, 12°37′ E) to 1 g m−2 year−1 in Le Casset (44°59′ N, 6°28′ E). The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Majorca with only two other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 year−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 year−1). From the 537 available samples, 98 major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period. Despite the large size of African dust plumes detected by satellites, more than 80 % of the major dust deposition events are recorded at only one station, suggesting that the dust provenance, transport and deposition processes (i.e. wet vs. dry) of dust are different and specific for the different deposition sites in the Mediterranean studied area. The results tend to indicate that wet deposition is the main form of deposition for mineral dust in the western Mediterranean basin, but the contribution of dry deposition (in the sense that no precipitation was detected at the surface) is far from being negligible, and contributes 10 to 46 % to the major dust deposition events, depending on the sampling site.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference75 articles.
1. Alfaro, S. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol distributions in source areas, J. Geophys. Res., 106, 18075–18084, 2001. 2. Avila, A., Queralt-Mitjans, I., and Alarcón, M.: Mineralogical composition of African dust delivered by red rains over northeastern Spain, J. Geophys. Res., 102, 21977–21996, https://doi.org/10.1029/97JD00485, 1997. 3. Avila, A., Alarcón, M., Castillo, S., Escudero, M., Orellana, J. G., Masqué, P., and Querol, X.: Variation of soluble and insoluble calcium in red rains related to dust sources and transport patterns from North Africa to northeastern Spain, J. Geophys. Res., 112, 1–14, https://doi.org/10.1029/2006JD007153, 2007. 4. Barnaba, F. and Gobbi, G. P.: Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001, Atmos. Chem. Phys., 4, 2367–2391, https://doi.org/10.5194/acp-4-2367-2004, 2004. 5. Bergametti, G. and Fôret, G.: Dust deposition, in: Mineral Dust: A Key Player in the Earth System, edited by: Knippertz, P. and Stuut, J.-B. W., 179–200, https://doi.org/10.1007/978-94-017-8978-3_8, Springer, Dordrecht, 2014.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|