Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions

Author:

Hällberg Petter L.,Schenk FrederikORCID,Yamoah Kweku A.,Kuang Xueyuen,Smittenberg Rienk H.ORCID

Abstract

Abstract. Island South-East Asia (ISEA) is a highly humid region that hosts the world's largest tropical peat deposits. Most of this peat accumulated only relatively recently during the Holocene, suggesting that the climate was drier and/or more seasonal during earlier times. Although there is evidence for savanna expansion and drier conditions during the Last Glacial Maximum (LGM, 21 ka BP), the mechanisms behind hydroclimatic changes during the ensuing deglacial period have received much less attention and are poorly understood. Here we use CESM1 climate model simulations to investigate the key drivers behind ISEA climate at the end of the Late Glacial (14.7–11.7 ka BP), with a focus on the last stadial of the Younger Dryas (12 ka BP). We further simulate the preceding Allerød (13 ka BP) interstadial climate and perform a sensitivity experiment to disentangle the climate impacts due to orbital forcing and Late Glacial boundary conditions against a slowdown of the Atlantic Meridional Overturning Circulation (AMOC). A transient simulation (TRACE) is used to track the climate seasonality and orbitally driven change over time during the deglaciation into the Holocene. In agreement with proxy evidence, CESM1 simulates overall drier conditions during the Younger Dryas and Allerød. More importantly, ISEA experienced extreme seasonal aridity, in stark contrast to the ever-wet modern climate. We identify that the simulated drying and enhanced seasonality in the Late Glacial is mainly the result of a combination of three factors: (1) large orbital insolation difference on the Northern Hemisphere (NH) between summer and winter, in contrast to the LGM and the present day, (2) a stronger (dry) East Asian winter monsoon caused by a larger meridional thermal gradient and (3) a major reorganization of the Indo-Pacific Walker Circulation with an inverted land-sea circulation and a complete breakdown of deep convection over ISEA in NH winters. The altered atmospheric circulation, sea surface temperature and sea level pressure patterns led to conditions resembling extreme El Niño events in the modern climate and a dissolution of the Intertropical Convergence Zone (ITCZ) over the region. From these results we infer that terrestrial cooling of ISEA and at least a seasonal reversal of land-sea circulation likely played a major role in delaying tropical peat formation until at least the onset of the Holocene period. Our results also suggest that centennial to millennial shifts in AMOC strength modifies the Pacific Ocean hydroclimate via alteration of the position of the ITCZ, and a modulation of the Pacific Walker Circulation. However, Late Glacial AMOC shifts are overall less important than hydroclimate changes due to orbital forcing and boundary condition changes relative to the modern climate.

Funder

Vetenskapsrådet

Svenska Forskningsrådet Formas

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3