A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States

Author:

Li XuecaoORCID,Zhou YuyuORCID,Zhu Zhengyuan,Cao Wenting

Abstract

Abstract. Dynamics of the urban extent at fine spatial and temporal resolutions over large areas are crucial for developing urban growth models and achieving sustainable development goals. However, there are limited practices of mapping urban dynamics with these two merits combined. In this study, we proposed a new method to map urban dynamics from Landsat time series data using the Google Earth Engine (GEE) platform and developed a national dataset of annual urban extent (1985–2015) at a fine spatial resolution (30 m) in the conterminous United States (US). First, we derived the change information of urbanized years in four periods that were determined from the National Land Cover Database (NLCD), using a temporal segmentation approach. Then, we classified urban extents in the beginning (1985) and ending (2015) years at the cluster level through the implementation of a change vector analysis (CVA)-based approach. We also developed a hierarchical strategy to apply the CVA-based approach due to the spatially explicit urban sprawl over large areas. The overall accuracy of mapped urbanized years is around 90 % with the 1-year tolerance strategy. The mapped urbanized areas in the beginning and ending years are reliable, with overall accuracies of 96 % and 88 %, respectively. Our results reveal that the total urban area increased by about 20 % during the period of 1985–2015 in the US, and the annual urban area growth is not linear over the years. Overall, the growth pattern of urban extent in most coastal states is plateaued over the past three decades while the states in the Midwestern US show an accelerated growth pattern. The derived annual urban extents are of great use for relevant urban studies such as urban area projection and urban sprawl modeling over large areas. Moreover, the proposed mapping framework is transferable for developing annual dynamics of urban extent in other regions and even globally. The data are available at https://doi.org/10.6084/m9.figshare.8190920.v2 (Li et al., 2019c).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3