Simplified SAGE II ozone data usage rules
-
Published:2020-06-23
Issue:2
Volume:12
Page:1419-1435
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Kremser StefanieORCID, Thomason Larry W.ORCID, Bird Leroy J.
Abstract
Abstract. High-quality satellite-based measurements are crucial to the assessment of global stratospheric composition change. The Stratospheric Aerosol and Gas Experiment II (SAGE II) provides the longest, continuous data set of vertically resolved ozone and aerosol extinction coefficients to date and therefore remains a cornerstone of understanding and detecting long-term ozone variability and trends in the stratosphere. Despite its stability, SAGE II measurements must be screened for outliers that are a result of excessive aerosol emitted into the atmosphere and that degrade inferences of change. Current methods for SAGE II ozone measurement quality assurance consist of multiple ad hoc and sometimes conflicting rules, leading to too much valuable data being removed or outliers being missed. In this work, the SAGE II ozone data set version 7.00 is used to develop and present a new set of screening recommendations and to compare the output to the screening recommendations currently used. Applying current recommendations to SAGE II ozone leads to unexpected features, such as removing ozone values around zero if the relative error is used as a screening criterion, leading to biases in monthly mean zonal mean ozone concentrations. Most of these current recommendations were developed based on “visual inspection”, leading to inconsistent rules that might not be applicable at every altitude and latitude. Here, a set of new screening recommendations is presented that take into account the knowledge of how the measurements were made. The number of screening recommendations is reduced to three, which mainly remove ozone values that are affected by high aerosol loading and are therefore not reliable measurements. More data remain when applying these new recommendations compared to the rules that are currently being used, leading to more data being available for scientific studies. The SAGE II ozone data set used here is publicly available at https://doi.org/10.5281/zenodo.3710518 (Kremser et al., 2020). The complete SAGE II version 7.00 data set, which includes other variables in addition to ozone, is available at https://eosweb.larc.nasa.gov/project/sage2/sage2_v7_table (last access: December 2019), https://doi.org/10.5067/ERBS/SAGEII/SOLAR_BINARY_L2-V7.0 (SAGE II Science Team, 2012; Damadeo et al., 2013).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference24 articles.
1. Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.,
Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and
Burrows, J.: Measurements of molecular absorption spectra with the SCIAMACHY
pre-flight model: instrument characterization and reference data for
atmospheric remote-sensing in the 230–2380 nm region, J.
Photochem. Photobio. A, 157, 167–184,
https://doi.org/10.1016/S1010-6030(03)00062-5, 2003. a 2. Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere,
Appl. Optics, 34, 2765–2773, https://doi.org/10.1364/AO.34.002765, 1995. a 3. Cunnold, D., Wang, H., Chu, W., and Froidevaux, L.: Comparisons between
Stratospheric Aerosol and Gas Experiment II and microwave limb sounder ozone
measurements and aliasing of SAGE II ozone trends in the lower stratosphere,
J. Geophys. Res., 101D6, 10061–10075, 1996. a 4. Cunnold, D. M., Chu, W. P., Barnes, R. A., McCormick, M. P., and Veiga, R. E.:
Validation of SAGE II ozone measurements, J. Geophys. Res.-Atmos., 94, 8447–8460, https://doi.org/10.1029/JD094iD06p08447, 1989. a 5. Damadeo, R. P., Zawodny, J. M., Thomason, L. W., and Iyer, N.: SAGE version 7.0 algorithm: application to SAGE II, Atmos. Meas. Tech., 6, 3539–3561, https://doi.org/10.5194/amt-6-3539-2013, 2013. a, b, c, d, e, f, g
|
|