Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada
-
Published:2020-02-05
Issue:1
Volume:12
Page:231-243
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Slaughter Andrew R.,Razavi Saman
Abstract
Abstract. The assumption of stationarity in water resources no longer holds, particularly within the context of future climate change. Plausible scenarios of flows that fluctuate outside the envelope of variability of the gauging data are required to assess the robustness of water resource systems to future conditions. This study presents a novel method of generating weekly time step flows based on tree-ring chronology data. Specifically, this method addresses two long-standing challenges with paleo-reconstruction: (i) the typically limited predictive power of tree-ring data at the annual and sub-annual scale and (ii) the inflated short-term persistence in tree-ring time series and improper use of pre-whitening. Unlike the conventional approach, this method establishes relationships between tree-ring chronologies and naturalized flow at a biennial scale to preserve persistence properties and variability of hydrological time series. Biennial flow reconstructions are further disaggregated to weekly flow reconstructions, according to the weekly flow distribution of reference 2-year instrumental periods, identified as periods with broadly similar tree-ring properties to those of every 2-year paleo-period. The Saskatchewan River basin (SaskRB) in Western Canada is selected as a study area, and weekly flows in its four major tributaries are extended back to the year 1600. The study shows that the reconstructed flows properly preserve the statistical properties of the reference flows, particularly in terms of short- to long-term persistence and the structure of variability across timescales. An ensemble approach is presented to represent the uncertainty inherent in the statistical relationships and disaggregation method. The ensemble of reconstructed weekly flows are publicly available for download from https://doi.org/10.20383/101.0139 (Slaughter and Razavi, 2019).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference29 articles.
1. Agafonov, L. I., Meko, D. M., and Panyushkina, I. P.: Reconstruction of Ob River, Russia, discharge from ring widths of floodplain trees, J. Hydrol., 543, 198–207, 2016. 2. Alberta Environment: Water Resources Management Model (WRMM), Government of Alberta, Edmonton, Alberta, 2002. 3. Axelson, J. N., Sauchyn, D. J., and Barichivich, J.: New reconstructions of streamflow variability in the South Saskatchewan River Basin from a network of tree ring chronologies, Alberta, Canada, Water Resour. Res., 45, W09422, https://doi.org/10.1029/2008WR007639, 2009. 4. Boucher, Ė., Ouarda, T. B. M. J., Bėgin, Y., and Nicault, A.: Spring flood reconstruction from continuous and discrete tree ring series, Water Resour. Res., 47, W07516, https://doi.org/10.1029/2010WR010131, 2011. 5. Brigode, P., Brissette, F., Nicault, A., Perreault, L., Kuentz, A., Mathevet, T., and Gailhard, J.: Streamflow variability over the 1881–2011 period in northern Québec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis, Clim. Past, 12, 1785–1804, https://doi.org/10.5194/cp-12-1785-2016, 2016.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|