The PetroPhysical Property Database (P<sup>3</sup>) – a global compilation of lab-measured rock properties

Author:

Bär KristianORCID,Reinsch ThomasORCID,Bott JudithORCID

Abstract

Abstract. Petrophysical properties are key to populating local and/or regional numerical models and to interpreting results from geophysical investigation methods. Searching for rock property values measured on samples from a specific rock unit at a specific location might become a very time-consuming challenge given that such data are spread across diverse compilations and that the number of publications on new measurements is continuously growing and data are of heterogeneous quality. Profiting from existing laboratory data to populate numerical models or interpret geophysical surveys at specific locations or for individual reservoir units is often hampered if information on the sample location, petrography, stratigraphy, measuring method and conditions is sparse or not documented. Within the framework of the EC-funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement no. 608553), an open-access database of lab-measured petrophysical properties has been developed (Bär et al., 2017, 2019b: P3 – database, https://doi.org/10.5880/GFZ.4.8.2019.P3. The goal of this hierarchical database is to provide easily accessible information on physical rock properties relevant for geothermal exploration and reservoir characterisation in a single compilation. Collected data include classical petrophysical, thermophysical, and mechanical properties as well as electrical conductivity and magnetic susceptibility. Each measured value is complemented by relevant meta-information such as the corresponding sample location, petrographic description, chronostratigraphic age, if available, and original citation. The original stratigraphic and petrographic descriptions are transferred to standardised catalogues following a hierarchical structure ensuring inter-comparability for statistical analysis (Bär and Mielke, 2019: P3 – petrography, https://doi.org/10.5880/GFZ.4.8.2019.P3.p; Bär et al., 2018, 2019a: P3 – stratigraphy, https://doi.org/10.5880/GFZ.4.8.2019.P3.s). In addition, information on the experimental setup (methods) and the measurement conditions are listed for quality control. Thus, rock properties can directly be related to in situ conditions to derive specific parameters relevant for simulating subsurface processes or interpreting geophysical data. We describe the structure, content and status quo of the database and discuss its limitations and advantages for the end user.

Funder

FP7 Energy

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3