Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016

Author:

Xu Yidi,Yu LeORCID,Li WeiORCID,Ciais Philippe,Cheng Yuqi,Gong Peng

Abstract

Abstract. Increasing global demand of vegetable oils and biofuels results in significant oil palm expansion in southeastern Asia, predominately in Malaysia and Indonesia. The land conversion to oil palm plantations has posed risks to deforestation (50 % of the oil palm was taken from forest during 1990–2005; Koh and Wilcove, 2008), loss of biodiversity and greenhouse gas emission over the past decades. Quantifying the consequences of oil palm expansion requires fine-scale and frequently updated datasets of land cover dynamics. Previous studies focused on total changes for a multi-year interval without identifying the exact time of conversion, causing uncertainty in the timing of carbon emission estimates from land cover change. Using Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), ALOS-2 PALSAR-2 and Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, we produced an annual oil palm area dataset (AOPD) at 100 m resolution in Malaysia and Indonesia from 2001 to 2016. We first mapped the oil palm extent using PALSAR and PALSAR-2 data for 2007–2010 and 2015–2016 and then applied a disturbance and recovery algorithm (Breaks For Additive Season and Trend – BFAST) to detect land cover change time points using MODIS data during the years without PALSAR data (2011–2014 and 2001–2006). The new oil palm land cover maps are assessed to have an accuracy of 86.61 % in the mapping step (2007–2010 and 2015–2016). During the intervening years when MODIS data are used, 75.74 % of the detected change time matched the timing of actual conversion using Google Earth and Landsat images. The AOPD revealed spatiotemporal oil palm dynamics every year and shows that plantations expanded from 2.59 to 6.39×106 ha and from 3.00 to 12.66×106 ha in Malaysia and Indonesia, respectively (i.e. a net increase of 146.60 % and 322.46 %) between 2001 and 2016. The higher trends from our dataset are consistent with those from the national inventories, with limited annual average difference in Malaysia (0.2×106 ha) and Indonesia (−0.17×106 ha). We highlight the capability of combining multiple-resolution radar and optical satellite datasets in annual plantation mapping to a large extent by using image classification and statistical boundary-based change detection to achieve long time series. The consistent characterization of oil palm dynamics can be further used in downstream applications. The annual oil palm plantation maps from 2001 to 2016 at 100 m resolution are published in the Tagged Image File Format with georeferencing information (GeoTIFF) at https://doi.org/10.5281/zenodo.3467071 (Xu et al., 2019).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference91 articles.

1. Austin, K. G., Schwantes, A. M., Gu, Y., and Kasibhatla, P.: What causes deforestation in Indonesia?, Environ. Res. Lett., 14, 024007, https://doi.org/10.1088/1748-9326/aaf6db, 2018.

2. Baklanov, A., Khachay, M., and Pasynkov, M.: Application of fully convolutional neural networks to mapping industrial oil palm plantations, International Conference on Analysis of Images, Social Networks and Texts, 11179, 155–16, https://doi.org/10.1007/978-3-030-11027-7_167, 2018.

3. Balasundram, S. K., Memarian, H., and Khosla, R.: Estimating oil palm yields using vegetation indices derived from Quickbird, Life Sci. J., 10, 851–860, 2013.

4. Barr, C. M. and Sayer, J. A.: The political economy of reforestation and forest restoration in Asia–Pacific: Critical issues for REDD+, Biol. Conserv., 154, 9–19, 2012.

5. Broich, M., Hansen, M. C., Potapov, P., Adusei, B., Lindquist, E., and Stehman, S. V.: Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia, Int. J. Appl. Earth Obs., 13, 277–291, https://doi.org/10.1016/j.jag.2010.11.004, 2011.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3