Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground

Author:

Lainer MartinORCID,Brennan Killian P.ORCID,Hering Alessandro,Kopp JérômeORCID,Monhart SamuelORCID,Wolfensberger Daniel,Germann UrsORCID

Abstract

Abstract. Hail is a major threat associated with severe thunderstorms, and estimating the hail size is important for issuing warnings to the public. For the validation of existing operational, radar-derived hail estimates, ground-based observations are necessary. Automatic hail sensors, for example within the Swiss Hail Network, record the kinetic energy of hailstones to estimate the hail sizes. Due to the small size of the observational area of these sensors (0.2 m2), the full hail size distribution (HSD) cannot be retrieved. To address this issue, we apply a state-of-the-art custom trained deep learning object detection model to drone-based aerial photogrammetric data to identify hailstones and estimate the HSD. Photogrammetric data of hail on the ground were collected for one supercell thunderstorm crossing central Switzerland from southwest to northeast in the afternoon of 20 June 2021. The hail swath of this intense right-moving supercell was intercepted a few minutes after the passage at a soccer field near Entlebuch (canton of Lucerne, Switzerland) and aerial images were taken by a commercial DJI drone, equipped with a 45-megapixel full-frame camera system. The resulting images have a ground sampling distance (GSD) of 1.5 mm per pixel, defined by the focal length of 35 mm of the camera and a flight altitude of 12 m above the ground. A 2-dimensional orthomosaic model of the survey area (750.4 m2) is created based on 116 captured images during the first drone mapping flight. Hail is then detected using a region-based convolutional neural network (Mask R-CNN). We first characterize the hail sizes based on the individual hail segmentation masks resulting from the model detections and investigate the performance using manual hail annotations by experts to generate validation and test data sets. The final HSD, composed of 18 207 hailstones, is compared with nearby automatic hail sensor observations, the operational weather-radar-based hail product MESHS (Maximum Expected Severe Hail Size) and crowdsourced hail reports. Based on the retrieved data set, a statistical assessment of sampling errors of hail sensors is carried out. Furthermore, five repetitions of the drone-based photogrammetry mission within 18.65 min facilitate investigations into the hail-melting process on the ground.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3