New geophysical memory-logging system for highly unstable and inclined scientific exploration drilling

Author:

Kück JochemORCID,Groh Marco,Töpfer Martin,Jurczyk Andreas,Harms Ulrich

Abstract

Abstract. We established a cable-free memory-logging system for drill-string-deployed geophysical borehole measurements. For more than 20 years, various so-called “logging while tripping” (LWT) techniques have been available in the logging service industry. However, this method has rarely been used in scientific drilling, although it enables logging in deviated and unstable boreholes, such as in lacustrine sediment drilling projects. LWT operations have a far lower risk of damage or loss of downhole logging equipment compared with the common wireline logging. For this purpose, we developed, tested, and commissioned a modular memory-logging system that does not require drill string modifications, such as special collars, and can be deployed in standard wireline core drilling diameters (HQ, bit size of 96 mm, and PQ, bit size of 123 mm). The battery-powered, autonomous sondes register the profiles of the natural GR (gamma radiation) spectrum, sonic velocity, magnetic susceptibility, electric resistivity, temperature, and borehole inclination in high quality while they are pulled out along with the drill string. As a precise depth measurement carried out in the drill rig is just as important as the actual petrophysical downhole measurements, we developed depth-measuring devices providing a high accuracy of less than 0.1 m deviation from the wireline-determined depth. Moreover, the modular structure of the system facilitates sonde deployment in online mode for wireline measurements.

Publisher

Copernicus GmbH

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference18 articles.

1. Abbott, M. B. and Rodbell, D. T.: Stratigraphic correlation and splice generation for sediments recovered from a large-lake drilling project: an example from Lake Junín, Peru, J. Paleolimnol., 63, 83–100, https://doi.org/10.1007/s10933-019-00098-w, 2020.

2. Aivalis, J., Meszaros, T., Porter, R., Reischman, R., Ridley, R.,Wells, P., Crouch, B. W., Reid, T. L., and Simpson, G. A.: Logging Through the Bit, Oilfield Review Summer 2012, 24, 44–53, 2012

3. Almqvist, B., Brander, L., Giese, R. Harms, U., Juhlin, C., Lindén, C., Lorenz, H., and Rosberg, J.: I-EDDA test center for core-drilling and downhole investigations, EGU General Assembly 2018, 8–13 April 2018, Vienna, Austria, Geophysical Research Abstracts, 20, EGU2018-14837, 2018.

4. Baumgarten, H. and Wonik, T.: Cyclostratigraphic studies of sediments from Lake Van (Turkey) based on their uranium contents obtained from downhole logging and paleoclimatic implications, Int. J. Earth Sci., 104, 1639–1654, https://doi.org/10.1007/s00531-014-1082-x, 2015.

5. Beal, J.: Tight oil vertical log analysis applied to horizontal Logging While Tripping (LWT) data of Cretaceous-aged Viking formation, Saskatchewan, Canada: a multi-disciplinary review of initial and extended findings, AAPG Rocky Mountain Section Meeting, Cheyenne, WY, USA, 2019.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3