Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques

Author:

Schwanghart WolfgangORCID,Scherler DirkORCID

Abstract

Abstract. The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms – quantile carving and the CRS algorithm – that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12 m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3