Author:
Archer D. E.,Buffett B. A.,McGuire P. C.
Abstract
Abstract. We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 140 million years. The model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, but is more sensitive to reasonable changes in POC than it is to reasonable changes in temperature. This behavior could lead to higher inventories of hydrate during hothouse climate conditions, rather than lower as generally assumed, due to the enrichment of the sediments in organic carbon. The hydrate inventory in the model is extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum in the model. The geochemistry of the sediment column is altered by the addition of vertical high-permeability chimneys intended to mimic the effects of heterogeneity in the real sediment column due to faults and chimneys, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water DIC concentrations are consistent with chemical weathering at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from POC of 50%, which is somewhat lower than redox balance with the H/C of organic matter in the model. Other phenomena which we simulated had only small impact on the hydrate inventory, including thermogenic methane, dissolved organic carbon, and sediment transport characteristics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献