Characterization of high-intensity, long-duration continuous auroral activity (HILDCAA) events using recurrence quantification analysis

Author:

Mendes OdimORCID,Domingues Margarete Oliveira,Echer Ezequiel,Hajra RajkumarORCID,Menconi Varlei Everton

Abstract

Abstract. Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975–2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere–ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3