Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

Author:

Crossman J.,Futter M. N.,Whitehead P. G.,Stainsby E.,Baulch H. M.,Jin L.,Oni S. K.ORCID,Wilby R. L.,Dillon P. J.

Abstract

Abstract. Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968–1997) to two future periods: 2020–2049 and 2060–2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference106 articles.

1. Adams, H. D., Williams, A. P., Chonggang, X., Rauscher, S. A., Jiang, X., and McDowell, N. G.: Empirical and process-based approaches to climate-induced forest mortality loads, Front. Plant. Sci., https://doi.org/10.3389/fpls.2013.00438, in press, 2013.

2. Akhtar, M., Ahmad, N., and Booij, M. J.: The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios, J. Hydrol., 355, 148–163, 2008.

3. Bangay, G. E.: Livestock and poultry wastes in the Great Lakes Basin. Environmental Concerns and Management Issues, Social Science Series No. 15, Environment Canada, Inland Waters Directorate, Ontario Region, Water planning and Management Branch, Burlington, Ontario, 1976.

4. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.

5. Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (Eds.): Climate Change and Water, Technical Paper VI of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, Switzerland, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3