Separating precipitation and evapotranspiration from noise – a new filter routine for high-resolution lysimeter data

Author:

Peters A.,Nehls T.,Schonsky H.,Wessolek G.

Abstract

Abstract. Weighing lysimeters yield the most precise and realistic measures for evapotranspiration (ET) and precipitation (P), which are of great importance for many questions regarding soil and atmospheric sciences. An increase or a decrease of the system mass (lysimeter plus seepage) indicates P or ET. These real mass changes of the lysimeter system have to be separated from measurement noise (e.g., caused by wind). A promising approach to filter noisy lysimeter data is (i) to introduce a smoothing routine, like a moving average with a certain averaging window, w, and then (ii) to apply a certain threshold value, δ, accounting for measurement accuracy, separating significant from insignificant weight changes. Thus, two filter parameters are used, namely w and δ. In particular, the time-variable noise due to wind as well as strong signals due to heavy precipitation pose challenges for such noise-reduction algorithms. If w is too small, data noise might be interpreted as real system changes. If w is too wide, small weight changes in short time intervals might be disregarded. The same applies to too small or too large values for δ. Application of constant w and δ leads either to unnecessary losses of accuracy or to faulty data due to noise. The aim of this paper is to solve this problem with a new filter routine that is appropriate for any event, ranging from smooth evaporation to strong wind and heavy precipitation. Therefore, the new routine uses adaptive w and δ in dependence on signal strength and noise (AWAT – adaptive window and adaptive threshold filter). The AWAT filter, a moving-average filter and the Savitzky–Golay filter with constant w and δ were applied to real lysimeter data comprising the above-mentioned events. The AWAT filter was the only filter that could handle the data of all events very well. A sensitivity study shows that the magnitude of the maximum threshold value has practically no influence on the results; thus only the maximum window width must be predefined by the user.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference24 articles.

1. Aboukhaled, A., Alfaro, A., and Smith, M.: Lysimeters, FAO Irrigation and Drainage Paper, no. 39, FAO – Food and Agriculture Organization of the United Nations, Rome, Italy, 1982.

2. Akaike, H.: A new look at statistical model identification, IEEE Trans. Autom. Control, AC19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.

3. Bromba, M. and Ziegler, H.: Application hints for Savitzky–Golay digital smoothing filters, Anal. Chem., 53, 1583–1586, https://doi.org/10.1021/ac00234a011, 1981.

4. Fank, J.: Wasserbilanzauswertung aus Präzisionslysimeterdaten, in: 15. Gumpensteiner Lysimetertagung 2013, Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning, Austria, 85–92, 2013.

5. Foken, T.: The energy balance closure problem: An overview, Ecol. Applications, 18, 1351–1367, https://doi.org/10.1890/06-0922.1, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3