Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China

Author:

Gao H.ORCID,Hrachowitz M.ORCID,Fenicia F.,Gharari S.,Savenije H. H. G.ORCID

Abstract

Abstract. Although elevation data are globally available and used in many existing hydrological models, their information content is still underexploited. Topography is closely related to geology, soil, climate and land cover. As a result, it may reflect the dominant hydrological processes in a catchment. In this study, we evaluated this hypothesis through four progressively more complex conceptual rainfall-runoff models. The first model (FLEXL) is lumped, and it does not make use of elevation data. The second model (FLEXD) is semi-distributed with different parameter sets for different units. This model uses elevation data indirectly, taking spatially variable drivers into account. The third model (FLEXT0), also semi-distributed, makes explicit use of topography information. The structure of FLEXT0 consists of four parallel components representing the distinct hydrological function of different landscape elements. These elements were determined based on a topography-based landscape classification approach. The fourth model (FLEXT) has the same model structure and parameterization as FLEXT0 but uses realism constraints on parameters and fluxes. All models have been calibrated and validated at the catchment outlet. Additionally, the models were evaluated at two sub-catchments. It was found that FLEXT0 and FLEXT perform better than the other models in nested sub-catchment validation and they are therefore better spatially transferable. Among these two models, FLEXT performs better than FLEXT0 in transferability. This supports the following hypotheses: (1) topography can be used as an integrated indicator to distinguish between landscape elements with different hydrological functions; (2) FLEXT0 and FLEXT are much better equipped to represent the heterogeneity of hydrological functions than a lumped or semi-distributed model, and hence they have a more realistic model structure and parameterization; (3) the soft data used to constrain the model parameters and fluxes in FLEXT are useful for improving model transferability. Most of the precipitation on the forested hillslopes evaporates, thus generating relatively little runoff.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3