Attribution of hydrologic forecast uncertainty within scalable forecast windows

Author:

Yang L.ORCID,Tian F.ORCID,Sun Y.,Yuan X.ORCID,Hu H.

Abstract

Abstract. Hindcasts based on the extended streamflow prediction (ESP) approach are carried out in a typical rainfall-dominated basin in China, aiming to examine the roles of initial conditions (IC), future atmospheric forcing (FC) and hydrologic model uncertainty (MU) in streamflow forecast skill. The combined effects of IC and FC are explored within the framework of a forecast window. By implementing virtual numerical simulations without the consideration of MU, it is found that the dominance of IC can last up to 90 days in the dry season, while its impact gives way to FC for lead times exceeding 30 days in the wet season. The combined effects of IC and FC on the forecast skill are further investigated by proposing a dimensionless parameter (β) that represents the ratio of the total amount of initial water storage and the incoming rainfall. The forecast skill increases exponentially with β, and varies greatly in different forecast windows. Moreover, the influence of MU on forecast skill is examined by focusing on the uncertainty of model parameters. Two different hydrologic model calibration strategies are carried out. The results indicate that the uncertainty of model parameters exhibits a more significant influence on the forecast skill in the dry season than in the wet season. The ESP approach is more skillful in monthly streamflow forecast during the transition period from wet to dry than otherwise. For the transition period from dry to wet, the low skill of the forecasts could be attributed to the combined effects of IC and FC, but less to the biases in the hydrologic model parameters. For the forecasts in the dry season, the skill of the ESP approach is heavily dependent on the strategy of the model calibration.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3