Does consideration of water routing affect simulated water and carbon dynamics in terrestrial ecosystems?

Author:

Tang G.,Hwang T.ORCID,Pradhanang S. M.

Abstract

Abstract. The cycling of carbon (C) in terrestrial ecosystems is closely coupled with the cycling of water. An important mechanism connecting ecological and hydrological processes in terrestrial ecosystems is lateral flow of water along landscapes. Few studies, however, have examined explicitly how consideration of water routing affects simulated water and C dynamics in terrestrial ecosystems. The objective of this study is to explore how consideration of water routing in a process-based hydro-ecological model affects simulated water and C dynamics. To achieve that end, we rasterized the regional hydro-ecological simulation system (RHESSys) and employed the rasterized RHESSys (R-RHESSys) in a forested watershed. We performed and compared two contrasting simulations, one with and another without water routing. We found that R-RHESSys was able to correctly simulate major hydrological and ecological variables regardless of whether water routing was considered. When water routing was considered, however, soil water table depth and saturation deficit were simulated to be greater and spatially more heterogeneous. As a result, water (evaporation, transpiration, and evapotranspiration) and C (forest productivity, soil autotrophic and heterotrophic respiration) fluxes also were simulated to be spatially more heterogeneous compared to the simulation without water routing. When averaged for the entire watershed, the three simulated water fluxes were greater while C fluxes were smaller under simulation considering water routing compared to that ignoring water routing. In addition, the effects of consideration of water routing on simulated C and water dynamics were more apparent in dry conditions. Overall, the study demonstrated that consideration of water routing enabled R-RHESSys to better capture our preconception of the spatial patterns of water table depth and saturation deficit across the watershed. Because soil moisture is fundamental to the exchange of water and C fluxes among soil, vegetation and the atmosphere, ecosystem and C cycle models therefore need to explicitly represent water routing in order to accurately quantify the magnitude and patterns of water and C fluxes in terrestrial ecosystems.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3