Historical trends in precipitation and stream discharge at the Skjern River catchment, Denmark

Author:

Karlsson I. B.ORCID,Sonnenborg T. O.,Jensen K. H.ORCID,Refsgaard J. C.

Abstract

Abstract. A 133 yr data set from the 1055 km2 Skjern River catchment in western Denmark has been analysed with respect to precipitation, temperature, evapotranspiration and discharge. The precipitation series have been tested and corrected using the standard normal homogeneity test and subsequently corrected for undercatch. The degree of change in the climatic variables is examined using the non-parametric Mann–Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 26% and a temperature change of 1.4°C, leading to increases in river discharge of 52% and groundwater recharge of 86%. A lumped conceptual hydrological model, NAM, was calibrated on the period 1951–1980 and showed generally an excellent match between simulated and observed discharge. The capability of the hydrological model to predict climate change impact was investigated by looking at performances outside the calibration period. The results showed a reduced model fit, especially for recent time periods (after the 1980s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately in the future, compared to the performance under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analysed using high flow and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference to normal. The analysis indicated that no significant amplitude increase of the hydrograph for both wet and dry extremes could be found superimposed on the overall discharge increase.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference77 articles.

1. Alexanderson, H. and Moberg, A.: Homogenization of swedish temperature data. Part 1: Homogeneity Test for Linear Trends, Int. J. Climatol., 17, 25–34, https://doi.org/10.1002/(SICI)1097-0088(199701)17:13.0.CO;2-J, 1997a.

2. Alexanderson, H. and Moberg, A.: Homogenization of swedish temperature data. Part 2: Homogenenized gridded air temperature compared with a subset of global gridded air temperature since 1861, Int. J. Climatol., 17, 35–54, https://doi.org/10.1002/(SICI)1097-0088(199701)17:13.0.CO;2-F, 1997b.

3. Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986.

4. Alexandersson, H.: Variationer och trender i nederbörden, SMHI, Norrköping, Sverige, 2004 (in Swedish).

5. Allerup, P., Madsen, H., and Vejen, F.: A comprehensive model for correcting point precipitation, Nord. Hydrol., 28, 1–20, 1997.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3