Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya
-
Published:2014-12-09
Issue:12
Volume:18
Page:4933-4949
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Ghimire C. P.,Bruijnzeel L. A.,Lubczynski M. W.,Bonell M.
Abstract
Abstract. This work investigates the trade-off between increases in vegetation water use and rain water infiltration afforded by soil improvement after reforesting severely degraded grassland in the Lesser Himalaya of central Nepal. The hillslope hydrological functioning (surface and subsurface soil hydraulic conductivities and overland flow generation) and the evapotranspiration (rainfall interception and transpiration) of the following contrasting vegetation types were quantified and examined in detail: (i) a nearly undisturbed, natural broadleaved forest; (ii) a 25-year-old, intensively-used pine plantation; and (iii) a highly degraded pasture. Planting pines increased vegetation water use relative to the pasture and natural forest situation by 355 and 55 mm year−1, respectively. On balance, the limited amount of extra infiltration afforded by the pine plantation relative to the pasture (only 90 mm year−1 due to continued soil degradation associated with regular harvesting of litter and understory vegetation in the plantation) proved insufficient to compensate the higher water use of the pines. As such, observed declines in dry season flows in the study area are thought to mainly reflect the higher water use of the pines although the effect could be moderated by better forest and soil management promoting infiltration. In contrast, a comparison of the water use of the natural forest and degraded pasture suggests that replacing the latter by (mature) broadleaved forest would (ultimately) have a near-neutral effect on dry season flows as the approximate gains in infiltration and evaporative losses were very similar (ca. 300 mm year−1 each). The results of the present study underscore the need for proper forest management for optimum hydrological functioning as well as the importance of protecting the remaining natural forests in the region.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference148 articles.
1. Alegre, J. C. and Cassel, D. K.: Dynamics of soil physical properties under alternate systems to slash-and-burn, Agricultural, Ecosyst. Environ., 58, 39–48, 1996. 2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, United Nations Food and Agriculture Organization, Rome, 1998. 3. Alvarado-Barrientos, M. S., Hernandez-Santana, V., and Asbjornsen, H.: Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico, Agr. Forest Meteorol., 168, 108–119, 2013. 4. Andermann, Ch., Longuevergne, L., Bonnet, S., Crave, A., Davy, Ph., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat. Geosci., 5, 127–132, 2012. 5. Andréassian, V.: Water and forests: From historical controversy to scientific debat, J. Hydrol., 291, 1–27, 2004.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|