Up-scaling short-term process-level understanding to longer timescales using a covariance-based approach

Author:

Lim W. H.ORCID,Roderick M. L.ORCID

Abstract

Abstract. General experience in hydrologic modelling suggests that the parameterisation of a model changes over different time and space scales. As a result, hydrologists often re-parameterise their models whenever different temporal or spatial resolutions are required. Here, we investigate theoretical aspects of this issue in a search for the cause(s) of the need for re-parameterisations. Based on Taylor series expansion, we present a mathematical approach for temporal up-scaling that involves covariance-based corrections. We apply the theory using a unique database of half-hourly pan evaporation measurements (comprising 237 days) and examine how the model parameters change when integrating from half-hour to daily and then monthly integration periods. We show that the model parameters change over different integration periods because of changes in the covariance between the model variables. In our model system, we find that the covariance-based correction is highly variable from day to day but settles down to a reasonably constant value over periods longer than about 15 days. The 15 days timescale is likely to be specific to our model system, nonetheless the underlying principle that there is a characteristic timescale for the covariance-based scaling correction of a particular hydrologic process might be general. If that proved true it would open up the possibility of systematically searching for characteristic integration periods for the key covariance-based scaling terms in other key hydrologic processes. That would in turn enable the development of more generalised hydrologic closure scheme(s).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference33 articles.

1. Adams, R. A.: Calculus: A Complete Course, Addison-Wesley, Reading, MA, 1991.

2. Albertson, J. D. and Montaldo, N.: Temporal dynamics of soil moisture variability: 1. Theoretical basis, Water Resour. Res., 39, 1274, https://doi.org/10.1029/2002WR001616, 2003.

3. Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: a review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.

4. Choudhury, B. J.: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model, J. Hydrol., 216, 99–110, https://doi.org/10.1016/s0022-1694(98)00293-5, 1999.

5. Dalton, J.: Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat, Mem. Manchester Lit. Philos. Soc., 5, 535–602, 1802.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3