The hydrological regime of a forested tropical Andean catchment
-
Published:2014-12-21
Issue:12
Volume:18
Page:5377-5397
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Clark K. E., Torres M. A., West A. J.ORCID, Hilton R. G., New M., Horwath A. B., Fisher J. B.ORCID, Rapp J. M., Robles Caceres A., Malhi Y.
Abstract
Abstract. The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010–2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr−1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr−1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and δD of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr−1. Actual evapotranspiration (AET) was 688 ± 138 mm yr−1, determined using the Priestley and Taylor–Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall–run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in stabilising the annual hydrograph in this region of the Andes.
Funder
Natural Sciences and Engineering Research Council of Canada Division of Earth Sciences European Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference128 articles.
1. ACCA: Weather data San Pedro station, Asociación para la concervación de la cuenca Amazónica http://atrium.andesamazon.org/index.php, last access: April 2012. 2. Allegre, C. J., Dupre, B., Negrel, P., and Gaillardet, J.: Sr-Nd-Pb isotope systematics in Amazon and Congo River systems: Constraints about erosion processes, Chem. Geol., 131, 93–112, https://doi.org/10.1016/0009-2541(96)00028-9, 1996. 3. Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat. Geosci., 5, 127–132, https://doi.org/10.1038/NGEO1356, 2012. 4. Anderson, E. P. and Maldonado-Ocampo, J. A.: A regional perspective on the diversity and conservation of tropical Andean fishes, Conserv. Biol., 25, 30–39, https://doi.org/10.1111/j.1523-1739.2010.01568.x, 2011. 5. Asner, G. P., Anderson, C. B., Martin, R. E., Knapp, D. E., Tupayachi, R., Sinca, F., and Malhi, Y.: Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient, Biogeosciences, 11, 843–856, https://doi.org/10.5194/bg-11-843-2014, 2014.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|