Heterogeneous CO<sub>2</sub> and CH<sub>4</sub> content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes

Author:

Pain Andrea J.,Martin Jonathan B.,Martin Ellen E.,Rennermalm Åsa K.,Rahman ShailyORCID

Abstract

Abstract. Accelerated melting of the Greenland Ice Sheet has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of Greenland Ice Sheet meltwater on Arctic greenhouse gas budgets. We evaluate subglacial discharge from the Greenland Ice Sheet for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks. We compare discharge from southwest (a sub-catchment of the Isunnguata Glacier, sub-Isunnguata, and the Russell Glacier) and southern Greenland (Kiattut Sermiat). Meltwater CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat. In contrast, meltwaters from southwest sites are supersaturated, even though oxidation reduces CH4 concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at sub-Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites; however, differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. At the sub-Isunnguata site, the predominant source of CO2 is organic matter (OM) remineralization. However, multiple or heterogeneous subglacial CO2 sources maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat, where CO2 is undersaturated. These results highlight a previously unrecognized degree of heterogeneity in greenhouse gas dynamics under the Greenland Ice Sheet. Future work should constrain the extent and controls of heterogeneity to improve our understanding of the impact of Greenland Ice Sheet melt on Arctic greenhouse gas budgets, as well as the role of continental ice sheets in greenhouse gas variations over glacial–interglacial timescales.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3