Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

Author:

Skachko S.ORCID,Errera Q.,Ménard R.,Christophe Y.ORCID,Chabrillat S.ORCID

Abstract

Abstract. An ensemble Kalman filter (EnKF) assimilation method is applied to the tracer transport using the same stratospheric transport model as in the four-dimensional variational (4D-Var) assimilation system BASCOE (Belgian Assimilation System for Chemical ObsErvations). This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2 test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS (microwave limb sounder) ozone observations during an 8-month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the observation-minus-forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases less than 5% and standard deviation errors less than 10% in most of the stratosphere. Since the biases are markedly similar, they most probably have the same causes: these can be deficiencies in the model and in the observation data set, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble of forecasts.

Publisher

Copernicus GmbH

Reference46 articles.

1. Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.

2. Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteorol. Soc., 134, 1951–1970, 2008.

3. Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments, Mon. Weather Rev., 138, 1550–1566, 2010a.

4. Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L., and He, B.: Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations, Mon. Weather Rev., 138, 1567–1586, 2010b.

5. Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Ensemble-based chemical data assimilation. I: General approach, Q. J. Roy. Meteorol. Soc., 133, 1229–1243, 2007a.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3