Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles
-
Published:2020-10-20
Issue:10
Volume:13
Page:5551-5567
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Lei Ting, Ma Nan, Hong Juan, Tuch Thomas, Wang Xin, Wang Zhibin, Pöhlker Mira, Ge MaofaORCID, Wang WeigangORCID, Mikhailov EugeneORCID, Hoffmann Thorsten, Pöschl UlrichORCID, Su HangORCID, Wiedensohler Alfred, Cheng YafangORCID
Abstract
Abstract. Interactions between water and nanoparticles are relevant for
atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (±1 %),
high accuracy of the differential mobility analyzer (DMA) voltage (±0.1 %) in the range of
∼0–50 V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (<1.4 %). To maintain a
stable relative humidity (RH), the humidification system and the second DMA
are placed in a well-insulated and air conditioner housing (±0.1 K).
We also tested and discussed different ways of preventing predeliquescence
in the second DMA. Our measurement results for ammonium sulfate
nanoparticles are in good agreement with Biskos et al. (2006b), with no
significant size effect on the deliquescence and efflorescence relative
humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference84 articles.
1. Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, 2018. 2. Atkins, P., De Paula, J., and Walters, V.: Physical Chemistry, W. H.
Freeman, Oxford University Press, Oxford, 2006. 3. Bezantakos, S., Huang, L., Barmpounis, K., Martin, S. T., and Biskos, G.:
Relative humidity non-uniformities in hygroscopic tandem differential
mobility analyzer measurements, J. Aerosol Sci., 101, 1–9,
https://doi.org/10.1016/j.jaerosci.2016.07.004, 2016. 4. Birmili, W., Stratmann, F., Wiedensohler, A., Covert, D., M. Russell, L.,
and Berg, O.: Determination of differential mobility analyzer transfer
functions using identical instruments in Series, Aerosol Sci. Technol., 27,
215–223, 1997. 5. Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian, S., Schladitz, A., Löschau, G., Cyrys, J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U., Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O., Ries, L., Gerwig, H., Wirtz, K., and Fiebig, M.: Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN), Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, 2016.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|