Wind sensing with drone-mounted wind lidars: proof of concept
-
Published:2020-02-07
Issue:2
Volume:13
Page:521-536
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Vasiljević NikolaORCID, Harris Michael, Tegtmeier Pedersen AndersORCID, Rolighed Thorsen Gunhild, Pitter Mark, Harris Jane, Bajpai Kieran, Courtney Michael
Abstract
Abstract. The fusion of drone and wind lidar technology introduces the exciting possibility of performing high-quality wind measurements virtually anywhere. We present a proof-of-concept (POC) drone–lidar system and report results from several test campaigns that demonstrate its ability to measure accurate wind speeds. The POC system is based on a dual-telescope continuous-wave (CW) lidar, with drone-borne telescopes and ground-based optoelectronics. Commercially available drone and gimbal units are employed. The demonstration campaigns started with a series of comparisons of the wind speed measurements acquired by the POC system to simultaneous measurements performed by nearby mast-based sensors. On average, an agreement down to about 0.1 m s−1 between mast- and drone-based measurements of the horizontal wind speed is found. Subsequently, the extent of the flow disturbance caused by the drone downwash was investigated. These tests vindicated the somewhat conservative choice of lidar measurement ranges made for the initial wind speed comparisons. Overall, the excellent results obtained without any drone motion correction and with fairly primitive drone position control indicate the potential of drone–lidar systems in terms of accuracy and applications. The next steps in the development are outlined and several potential applications are discussed.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference45 articles.
1. Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D., Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179, 2019. a, b, c 2. Bingöl, F.: Complex Terrain and Wind Lidars, PhD thesis, available at:
http://orbit.dtu.dk/files/5245709/ris-phd-52.pdf (last access: 28 January 2020), 2010. a 3. Borraccino, A., Courtney, M., and Wagner, R.: Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars, Remote Sensing, 8, 907, https://doi.org/10.3390/rs8110907, 2016. a, b 4. Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a, b, c, d 5. Browning, K. A. and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, J. Appl. Meteorol., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|