Wind sensing with drone-mounted wind lidars: proof of concept

Author:

Vasiljević NikolaORCID,Harris Michael,Tegtmeier Pedersen AndersORCID,Rolighed Thorsen Gunhild,Pitter Mark,Harris Jane,Bajpai Kieran,Courtney Michael

Abstract

Abstract. The fusion of drone and wind lidar technology introduces the exciting possibility of performing high-quality wind measurements virtually anywhere. We present a proof-of-concept (POC) drone–lidar system and report results from several test campaigns that demonstrate its ability to measure accurate wind speeds. The POC system is based on a dual-telescope continuous-wave (CW) lidar, with drone-borne telescopes and ground-based optoelectronics. Commercially available drone and gimbal units are employed. The demonstration campaigns started with a series of comparisons of the wind speed measurements acquired by the POC system to simultaneous measurements performed by nearby mast-based sensors. On average, an agreement down to about 0.1 m s−1 between mast- and drone-based measurements of the horizontal wind speed is found. Subsequently, the extent of the flow disturbance caused by the drone downwash was investigated. These tests vindicated the somewhat conservative choice of lidar measurement ranges made for the initial wind speed comparisons. Overall, the excellent results obtained without any drone motion correction and with fairly primitive drone position control indicate the potential of drone–lidar systems in terms of accuracy and applications. The next steps in the development are outlined and several potential applications are discussed.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference45 articles.

1. Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D., Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, Sensors, 19, 2179, https://doi.org/10.3390/s19092179, 2019. a, b, c

2. Bingöl, F.: Complex Terrain and Wind Lidars, PhD thesis, available at: http://orbit.dtu.dk/files/5245709/ris-phd-52.pdf (last access: 28 January 2020), 2010. a

3. Borraccino, A., Courtney, M., and Wagner, R.: Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars, Remote Sensing, 8, 907, https://doi.org/10.3390/rs8110907, 2016. a, b

4. Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a, b, c, d

5. Browning, K. A. and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, J. Appl. Meteorol., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3