Detecting hotspots of atmosphere–vegetation interaction via slowing down – Part 1: A stochastic approach

Author:

Bathiany S.,Claussen M.,Fraedrich K.

Abstract

Abstract. An analysis of so-called early warning signals (EWS) is proposed to identify the spatial origin of a sudden transition that results from a loss in stability of a current state. EWS, such as rising variance and autocorrelation, can be indicators of an increased relaxation time (slowing down). One particular problem of EWS-based predictions is the requirement of sufficiently long time series. Spatial EWS have been suggested to alleviate this problem by combining different observations from the same time. However, the benefit of EWS has only been shown in idealised systems of predefined spatial extent. In a more general context like a complex climate system model, the critical subsystem that exhibits a loss in stability (hotspot) and the critical mode of the transition may be unknown. In this study we document this problem with a simple stochastic model of atmosphere–vegetation interaction where EWS at individual grid cells are not always detectable before a vegetation collapse as the local loss in stability can be small. However, we suggest that EWS can be applied as a diagnostic tool to find the hotspot of a sudden transition and to distinguish this hotspot from regions experiencing an induced tipping. For this purpose we present a scheme which identifies a hotspot as a certain combination of grid cells which maximise an EWS. The method can provide information on the causality of sudden transitions and may help to improve the knowledge on the susceptibility of climate models and other systems.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3