Snow cover variability and trend over the Hindu Kush Himalayan region using MODIS and SRTM data

Author:

Desinayak Nirasindhu,Prasad Anup K.ORCID,El-Askary HeshamORCID,Kafatos Menas,Asrar Ghassem R.

Abstract

Abstract. Snow cover changes have a direct bearing on the regional and global energy and water cycles and the change in the Earth's climate conditions. We studied the relatively long-term (2000–2017) altitudinal spatiotemporal changes in the coverage of snow and glaciers in one of the world's largest mountainous regions, the Hindu Kush Himalayan (HKH) region, including Tibet, using remote sensing data (5 km grid resolution) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. This dataset provided a unique opportunity to study zonal and hypsographic changes in the intra-annual (accumulating season and melting season) and interannual variations in snow and glacial cover over the HKH region. The zonal and altitudinal (hypsographic) analyses were carried out for the melting season and accumulating season. The altitude-wise linear trend analysis (Pearson's) of snow cover, shown as a hypsographic curve, clearly indicates a major decline in snow cover (average of 5 % or more at 100 m interval aggregates) between 4000–4500 and 5500–6000 m altitudes, which is consistent with the median trend (Theil–Sen – TS) and the monotonic trend (Mann–Kendall – MK; statistics) analysis. This analysis also revealed the regions and altitudes where major and statistically significant increases (10 % to 30 %) or decreases (−10 % to −30 %) in snow cover are identified. The extrapolation of the altitude-wise linear trend shows that it may take between ∼ 74 and 7900 years, for 3001–6000 and 6000–7000 m altitude zones respectively, for mean snow cover to decline approximately 25 % in the HKH. More detailed analysis based on longer observational records and model simulations is warranted to better understand the underlying factors, processes, and feedbacks that affect the dynamic of snow cover in HKH. These preliminary results suggest a need for continued monitoring of this highly sensitive region to climate variability and change that depends on snow as a major source of freshwater for all human activities.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3