A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina

Author:

Diaz Resquin MelisaORCID,Lichtig PabloORCID,Alessandrello Diego,De Oto Marcelo,Gómez Darío,Rössler Cristina,Castesana PaulaORCID,Dawidowski Laura

Abstract

Abstract. Having a prediction model for air quality at a low computational cost can be useful for research, forecasting, regulatory, and monitoring applications. This is of particular importance for Latin America, where rapid urbanization has imposed increasing stress on the air quality of almost all cities. In recent years, machine learning techniques have been increasingly accepted as a useful tool for air quality forecasting. Out of these, random forest has proven to be an approach that is both well-performing and computationally efficient while still providing key components reflecting the nonlinear relationships among emissions, chemical reactions, and meteorological effects. In this work, we employed the random forest methodology to build and test a forecasting model for the city of Buenos Aires. We used this model to study the deep decline in most pollutants during the lockdown imposed by the COVID-19 (COronaVIrus Disease 2019) pandemic by analyzing the effects of the change in emissions, while taking into account the changes in the meteorology, using two different approaches. First, we built random forest models trained with the data from before the beginning of the lockdown periods. We used the data to make predictions of the business-as-usual scenario during the lockdown periods and estimated the changes in concentrations by comparing the model results with the observations. This allowed us to assess the combined effects of the particular weather conditions and the reduction in emissions during the period when restrictions were in place. Second, we used random forest with meteorological normalization to compare the observational data from the lockdown periods with the data from the same dates in 2019, thus decoupling the effects of the meteorology from short-term emission changes. This allowed us to analyze the general effect that restrictions similar to those imposed during the pandemic could have on pollutant concentrations, and this information could be useful to design mitigation strategies. The results during testing showed that the model captured the observed hourly variations and the diurnal cycles of these pollutants with a normalized mean bias of less than 6 % and Pearson correlation coefficients of the diurnal variations between 0.64 and 0.91 for all the pollutants considered. Based on the random forest results, we estimated that the lockdown implied relative changes in concentration of up to −45 % for CO, −75 % for NO, −46 % for NO2, −12 % for SO2, and −33 % for PM10 during the strictest mobility restrictions. O3 had a positive relative change in concentration (up to an 80 %) that is consistent with the response in a volatile-organic-compound-limited chemical regime to the decline in NOx emissions. The relative changes estimated using the meteorological normalization technique show mostly smaller changes than those obtained by the random forest predictive model. The relative changes were up to −26 % for CO, up to −47 % for NO, −36 % for NO2, −20 % for PM10, and up to 27 % for O3. SO2 is the only species that had a larger relative change when the meteorology was normalized (up to 20 %). This points out the need for accounting not only for differences in emissions but also in meteorological variables in order to evaluate the lockdown effects on air quality. The findings of this study may be valuable for formulating emission control strategies that do not disregard their implication on secondary pollutants. We believe that the model itself can also be a valuable contribution to a forecasting system in the city and that the general methodology could also be easily applied to other Latin American cities as well. We also provide the first O3 and SO2 observational dataset in more that a decade for a residential area in Buenos Aires, and it is openly available at https://doi.org/10.17632/h9y4hb8sf8.1 (Diaz Resquin et al., 2021).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference70 articles.

1. Act 1356: Preservación del recurso aire y prevención y control de la contaminación atmosférica, https://www.buenosaires.gob.ar/sites/gcaba/files/documents/ley_1356.pdf (last access: 7 September 2021), 2004. a

2. Agencia de Protección Ambiental (APrA), Secretaría de Ambiente, Jefatura de Gobierno: Calidad de Aire, Buenos Aires Data [data set], https://data.buenosaires.gob.ar/dataset/calidad-aire (last access: 4 January 2023), 2021. a, b

3. Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C., Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T., Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B., and Wilson, R. J.: Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.1), arXiv [preprint], https://doi.org/10.48550/arXiv.2004.04145, 2020. a

4. Anapolsky, S.: ¿cómo nos movemos en el AMBA? Conclusiones de la evidencia empírica y alternativas post-covid, Universidad de San Martín. ISSN: 2469-1631 Serie: Documentos de Trabajo del IT, https://www.unsam.edu.ar/institutos/transporte/publicaciones/Documento/ 18/ Comonos/ movemos/ en/ el/ AMBA/ -/ Anapolsky.pdfl (last access: 7 September 2021), 2020. a

5. Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U., Müller, M., Dawidowski, L., Faggi, A., Wolf-Benning, U., and Scheffknecht, G.: Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires, Atmos. Pollut. Res., 1, 1–8, https://doi.org/10.5094/APR.2010.001, 2010. a, b

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air Quality Prediction Using Machine Learning and Deep Learning: An Exploratory Study;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

2. Regional and Urban Air Quality in the Americas;Handbook of Air Quality and Climate Change;2023

3. Regional and Urban Air Quality in the Americas;Handbook of Air Quality and Climate Change;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3