Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning

Author:

Zhang Yufang,Liang ShunlinORCID,Ma Han,He TaoORCID,Wang QianORCID,Li Bing,Xu JiangleiORCID,Zhang GuodongORCID,Liu XiaobangORCID,Xiong Changhao

Abstract

Abstract. Motivated by the lack of long-term global soil moisture products with both high spatial and temporal resolutions, a global 1 km daily spatiotemporally continuous soil moisture product (GLASS SM) was generated from 2000 to 2020 using an ensemble learning model (eXtreme Gradient Boosting – XGBoost). The model was developed by integrating multiple datasets, including albedo, land surface temperature, and leaf area index products from the Global Land Surface Satellite (GLASS) product suite, as well as the European reanalysis (ERA5-Land) soil moisture product, in situ soil moisture dataset from the International Soil Moisture Network (ISMN), and auxiliary datasets (Multi-Error-Removed Improved-Terrain (MERIT) DEM and Global gridded soil information (SoilGrids)). Given the relatively large-scale differences between point-scale in situ measurements and other datasets, the triple collocation (TC) method was adopted to select the representative soil moisture stations and their measurements for creating the training samples. To fully evaluate the model performance, three validation strategies were explored: random, site independent, and year independent. Results showed that although the XGBoost model achieved the highest accuracy on the random test samples, it was clearly a result of model overfitting. Meanwhile, training the model with representative stations selected by the TC method could considerably improve its performance for site- or year-independent test samples. The overall validation accuracy of the model trained using representative stations on the site-independent test samples, which was least likely to be overfitted, was a correlation coefficient (R) of 0.715 and root mean square error (RMSE) of 0.079 m3 m−3. Moreover, compared to the model developed without station filtering, the validation accuracies of the model trained with representative stations improved significantly for most stations, with the median R and unbiased RMSE (ubRMSE) of the model for each station increasing from 0.64 to 0.74 and decreasing from 0.055 to 0.052 m3 m−3, respectively. Further validation of the GLASS SM product across four independent soil moisture networks revealed its ability to capture the temporal dynamics of measured soil moisture (R=0.69–0.89; ubRMSE = 0.033–0.048 m3 m−3). Lastly, the intercomparison between the GLASS SM product and two global microwave soil moisture datasets – the 1 km Soil Moisture Active Passive/Sentinel-1 L2 Radiometer/Radar soil moisture product and the European Space Agency Climate Change Initiative combined soil moisture product at 0.25∘ – indicated that the derived product maintained a more complete spatial coverage and exhibited high spatiotemporal consistency with those two soil moisture products. The annual average GLASS SM dataset from 2000 to 2020 can be freely downloaded from https://doi.org/10.5281/zenodo.7172664 (Zhang et al., 2022a), and the complete product at daily scale is available at http://glass.umd.edu/soil_moisture/ (last access: 12 May 2023).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3