GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present

Author:

Yin JiaboORCID,Slater Louise J.ORCID,Khouakhi AbdouORCID,Yu LeORCID,Liu PanORCID,Li FupengORCID,Pokhrel YaduORCID,Gentine Pierre

Abstract

Abstract. Terrestrial water storage (TWS) includes all forms of water stored on and below the land surface, and is a key determinant of global water and energy budgets. However, TWS data from measurements by the Gravity Recovery and Climate Experiment (GRACE) satellite mission are only available from 2002, limiting global and regional understanding of the long-term trends and variabilities in the terrestrial water cycle under climate change. This study presents long-term (i.e., 1940–2022) and relatively high-resolution (i.e., 0.25∘) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). The outcome, machine-learning-reconstructed TWS estimates (i.e., GTWS-MLrec), fits well with the GRACE/GRACE-FO measurements, showing high correlation coefficients and low biases in the GRACE era. We also evaluate GTWS-MLrec with other independent products such as the land–ocean mass budget, atmospheric and terrestrial water budget in 341 large river basins, and streamflow measurements at 10 168 gauges. The results show that our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets. Moreover, our reconstructions successfully reproduce the consequences of climate variability such as strong El Niño events. The GTWS-MLrec dataset consists of three reconstructions based on (a) mascons of the Jet Propulsion Laboratory of the California Institute of Technology, the Center for Space Research at the University of Texas at Austin, and the Goddard Space Flight Center of NASA; (b) three detrended and de-seasonalized reconstructions; and (c) six global average TWS series over land areas, both with and without Greenland and Antarctica. Along with its extensive attributes, GTWS_MLrec can support a wide range of geoscience applications such as better understanding the global water budget, constraining and evaluating hydrological models, climate-carbon coupling, and water resources management. GTWS-MLrec is available on Zenodo through https://doi.org/10.5281/zenodo.10040927 (Yin, 2023).

Funder

National Natural Science Foundation of China

UK Research and Innovation

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3