An open-source automatic survey of green roofs in London using segmentation of aerial imagery

Author:

Simpson Charles H.ORCID,Brousse OscarORCID,Mohajeri Nahid,Davies Michael,Heaviside Clare

Abstract

Abstract. Green roofs can mitigate heat, increase biodiversity, and attenuate storm water, giving some of the benefits of natural vegetation in an urban context where ground space is scarce. To guide the design of more sustainable and climate-resilient buildings and neighbourhoods, there is a need to assess the existing status of green roof coverage and explore the potential for future implementation. Therefore, accurate information on the prevalence and characteristics of existing green roofs is needed, but this information is currently lacking. Segmentation algorithms have been used widely to identify buildings and land cover in aerial imagery. Using a machine learning algorithm based on U-Net (Ronneberger et al., 2015) to segment aerial imagery, we surveyed the area and coverage of green roofs in London, producing a geospatial dataset (https://doi.org/10.5281/zenodo.7603123, Simpson et al., 2023). We estimate that there was 0.23 km2 of green roof in the Central Activities Zone (CAZ) of London, 1.07 km2 in Inner London, and 1.89 km2 in Greater London in the year 2021. This corresponds to 2.0 % of the total building footprint area in the CAZ and 1.3 % in Inner London. There is a relatively higher concentration of green roofs in the City of London, covering 3.9 % of the total building footprint area. Test set accuracy was 0.99, with an F score of 0.58. When tested against imagery and labels from a different year (2019), the model performed just as well as a model trained on the imagery and labels from that year, showing that the model generalised well between different imagery. We improve on previous studies by including more negative examples in the training data and by requiring coincidence between vector building footprints and green roof patches. We experimented with different data augmentation methods and found a small improvement in performance when applying random elastic deformations, colour shifts, gamma adjustments, and rotations to the imagery. The survey covers 1558 km2 of Greater London, making this the largest open automatic survey of green roofs in any city. The geospatial dataset is at the single-building level, providing a higher level of detail over the larger area compared to what was already available. This dataset will enable future work exploring the potential of green roofs in London and on urban climate modelling.

Funder

Wellcome Trust

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3