GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020

Author:

Zhang Xiao,Liu LiangyunORCID,Zhao Tingting,Chen Xidong,Lin ShangrongORCID,Wang Jinqing,Mi Jun,Liu Wendi

Abstract

Abstract. Wetlands, often called the “kidneys of the earth”, play an important role in maintaining ecological balance, conserving water resources, replenishing groundwater and controlling soil erosion. Wetland mapping is very challenging because of its complicated temporal dynamics and large spatial and spectral heterogeneity. An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This study proposes a novel method for wetland mapping by combining an automatic sample extraction method, existing multi-sourced products, satellite time-series images and a stratified classification strategy. This approach allowed for the generation of the first global 30 m wetland map with a fine classification system (GWL_FCS30), including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three coastal tidal wetland sub-categories (mangrove, salt marsh and tidal flats), which was developed using Google Earth Engine platform. We first combined existing multi-sourced global wetland products, expert knowledge, training sample refinement rules and visual interpretation to generate large and geographically distributed wetland training samples. Second, we integrated the Landsat reflectance time-series products and Sentinel-1 synthetic aperture radar (SAR) imagery to generate various water-level and phenological information to capture the complicated temporal dynamics and spectral heterogeneity of wetlands. Third, we applied a stratified classification strategy and the local adaptive random forest classification models to produce the wetland dataset with a fine classification system at each 5∘×5∘geographical tile in 2020. Lastly, GWL_FCS30, mosaicked by 961 5∘×5∘ regional wetland maps, was validated using 25 708 validation samples, which achieved an overall accuracy of 86.44 % and a kappa coefficient of 0.822. The cross-comparisons with other global wetland products demonstrated that the GWL_FCS30 dataset performed better in capturing the spatial patterns of wetlands and had significant advantages over the diversity of wetland sub-categories. The statistical analysis showed that the global wetland area reached 6.38 million km2, including 6.03 million km2 of inland wetlands and 0.35 million km2 of coastal tidal wetlands, approximately 72.96 % of which were distributed poleward of 40∘ N. Therefore, we can conclude that the proposed method is suitable for large-area wetland mapping and that the GWL_FCS30 dataset is an accurate wetland mapping product that has the potential to provide vital support for wetland management. The GWL_FCS30 dataset in 2020 is freely available at https://doi.org/10.5281/zenodo.7340516 (Liu et al., 2022).

Funder

National Natural Science Foundation of China

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3