Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
-
Published:2023-11-10
Issue:11
Volume:15
Page:4983-4995
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Jozef Gina C.ORCID, Klingel Robert, Cassano John J.ORCID, Maronga Björn, de Boer GijsORCID, Dahlke SandroORCID, Cox Christopher J.ORCID
Abstract
Abstract. Atmospheric measurements taken over the span of an entire year between October 2019 and September 2020 during the icebreaker-based Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provide insight into processes acting in the Arctic atmosphere. Through the merging of disparate yet complementary in situ observations, we can derive information about these thermodynamic and kinematic processes with great detail. This paper describes methods used to create a lower-atmospheric properties dataset containing information on several key features relating to the central Arctic atmospheric boundary layer, including properties of temperature inversions, low-level jets, near-surface meteorological conditions, cloud cover, and the surface radiation budget. The lower-atmospheric properties dataset was developed using observations from radiosondes launched at least four times per day, a 10 m meteorological tower and radiation station deployed on the sea ice near the research vessel Polarstern, and a ceilometer located on the deck of the Polarstern. This lower-atmospheric properties dataset, which can be found at https://doi.org/10.1594/PANGAEA.957760 (Jozef et al., 2023), contains metrics which fall into the overarching categories of temperature, wind, stability, clouds, and radiation at the time of each radiosonde launch. The purpose of the lower-atmospheric properties dataset is to provide a consistent description of general atmospheric boundary layer conditions throughout the MOSAiC year, which can aid in research applications with the overall goal of gaining a greater understanding of the atmospheric processes governing the central Arctic and how they may contribute to future climate change.
Funder
Office of Polar Programs National Aeronautics and Space Administration Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference49 articles.
1. Achtert, P., Brooks, I. M., Brooks, B. J., Moat, B. I., Prytherch, J., Persson, P. O. G., and Tjernström, M.: Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar, Atmos. Meas. Tech., 8, 4993–5007, https://doi.org/10.5194/amt-8-4993-2015, 2015. 2. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Polar Research and Supply Vessel POLARSTERN operated by the Alfred-Wegener-Institute, J. Large-Scale Res. Facil., 3, 1–8, https://doi.org/10.17815/jlsrf-3-163, 2017. 3. Atmospheric Radiation Measurement (ARM) user facility: Ceilometer (CEIL), 2019-10-11 to 2020-10-01, ARM Mobile Facility (MOS) MOSAIC (Drifting Obs – Study of Arctic Climate), AMF2 (M1), compiled by: Morris, V., Zhang, D., and Ermold, B., ARM Data Center [data set], https://doi.org/10.5439/1181954, 2019. 4. Brooks, I. M., Tjernström, M., Persson, P. O. G., Shupe, M. D., Atkinson, R. A., Canut, G., Birch, C. E., Mauritsen T., Sedlar, J., and Brooks, B. J.: The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study, J. Geophys. Res.-Atmos., 122, 9685–9704, https://doi.org/10.1002/2017JD027234, 2017. 5. Cai, Z., You, Q., Wu, F., Chen, H. W., Chen, D., and Cohen, J.: Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties, J. Climate, 34, 4871–4892, https://doi.org/10.1175/JCLI-D-20-0791.1, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|