LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
-
Published:2023-06-02
Issue:6
Volume:15
Page:2235-2258
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Herzschuh Ulrike, Böhmer Thomas, Li ChenzhiORCID, Chevalier ManuelORCID, Hébert RaphaëlORCID, Dallmeyer AnneORCID, Cao XianyongORCID, Bigelow Nancy H., Nazarova Larisa, Novenko Elena Y.ORCID, Park Jungjae, Peyron Odile, Rudaya Natalia A., Schlütz Frank, Shumilovskikh Lyudmila S., Tarasov Pavel E., Wang YongboORCID, Wen Ruilin, Xu Qinghai, Zheng Zhuo
Abstract
Abstract. Here we describe LegacyClimate 1.0, a dataset of the reconstruction of the mean July temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil pollen records from the Northern Hemisphere, spanning the entire Holocene, with some records reaching back to the Last Glacial Period. Two reconstruction methods, the modern analog technique (MAT) and weighted averaging partial least squares regression (WA-PLS), reveal similar results regarding spatial and temporal patterns. To reduce the impact of precipitation on temperature reconstruction, and vice versa, we also provide reconstructions using tailored modern pollen data, limiting the range of the corresponding other climate variables. We assess the reliability of the reconstructions, using information from the spatial distributions of the root mean squared error in the prediction and reconstruction significance tests. The dataset is beneficial for synthesis studies of proxy-based reconstructions and to evaluate the output of climate models and thus help to improve the models themselves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-access datasets at PANGAEA (https://doi.org/10.1594/PANGAEA.930512; Herzschuh et al., 2023a). The R code for the reconstructions is provided at Zenodo (https://doi.org/10.5281/zenodo.7887565; Herzschuh et al., 2023b), including the harmonized open-access modern and fossil datasets used for the reconstructions, so that customized reconstructions can be easily established.
Funder
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie H2020 European Research Council China Scholarship Council Russian Science Foundation
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference73 articles.
1. Andrén, E., Klimaschewski, A., Self, A. E., St. Amour, N., Andreev, A.
A., Bennett, K. D., Conley, D. J., Edwards, T. W. D., Solovieva, N., and
Hammarlund, D.: Holocene climate and environmental change in north-eastern
Kamchatka (Russian Far East), inferred from a multi-proxy study of lake
sediments, Global Planet. Change, 134, 41–54,
https://doi.org/10.1016/j.gloplacha.2015.02.013, 2015. 2. Behre, K. E.: The rôle of man in European vegetation history, in:
Vegetation history, edited by: Huntley, B. and Webb, T., Handbook of vegetation
science, 7, Springer, Dordrecht,
https://doi.org/10.1007/978-94-009-3081-0_17, 1988. 3. Birks, H. J. B.: Contributions of Quaternary botany to modern ecology and
biogeography, Plant Ecol. Divers., 12, 189–385,
https://doi.org/10.1080/17550874.2019.1646831, 2019. 4. Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and
Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary,
Open Ecol. J., 3, 68–110, https://doi.org/10.2174/1874213001003020068,
2010. 5. Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6,
457–474, https://doi.org/10.1214/11-BA618, 2011.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|