AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography
-
Published:2023-01-18
Issue:1
Volume:15
Page:317-329
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
d'Andrimont RaphaëlORCID, Claverie MartinORCID, Kempeneers Pieter, Muraro Davide, Yordanov Momchil, Peressutti Devis, Batič Matej, Waldner François
Abstract
Abstract. Field boundaries are at the core of many agricultural applications and are a key enabler for the operational monitoring of agricultural production to support food security. Recent scientific progress in deep learning methods has highlighted the capacity to extract field boundaries from satellite and aerial images with a clear improvement from object-based image analysis (e.g. multiresolution segmentation) or conventional filters (e.g. Sobel filters). However, these methods need labels to be trained on. So far, no standard data set exists to easily and robustly benchmark models and progress the state of the art. The absence of such benchmark data further impedes proper comparison against existing methods. Besides, there is no consensus on which evaluation metrics should be reported (both at the pixel and field levels). As a result, it is currently impossible to compare and benchmark new and existing methods. To fill these gaps, we introduce AI4Boundaries, a data set of images and labels readily usable to train and compare models on field boundary detection. AI4Boundaries includes two specific data sets: (i) a 10 m Sentinel-2 monthly composites for large-scale analyses in retrospect and (ii) a 1 m orthophoto data set for regional-scale analyses, such as the automatic extraction of Geospatial Aid Application (GSAA). All labels have been sourced from GSAA data that have been made openly available (Austria, Catalonia, France, Luxembourg, the Netherlands, Slovenia, and Sweden) for 2019, representing 14.8 M parcels covering 376 K km2. Data were selected following a stratified random sampling drawn based on two landscape fragmentation metrics, the perimeter/area ratio and the area covered by parcels, thus considering the diversity of the agricultural landscapes. The resulting “AI4Boundaries” dataset consists of 7831 samples of 256 by 256 pixels for the 10 m Sentinel-2 dataset and of 512 by 512 pixels for the 1 m aerial orthophoto. Both datasets are provided with the corresponding vector ground-truth parcel delineation (2.5 M parcels covering 47 105 km2), and with a raster version already pre-processed and ready to use.
Besides providing this open dataset to foster computer vision developments of parcel delineation methods, we discuss the perspectives and limitations of the dataset for various types of applications in the agriculture domain and consider possible further improvements. The data are available on the JRC Open Data Catalogue: http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9 (European Commission, Joint Research Centre, 2022).
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference27 articles.
1. Alemohammad, H.: Radiant ML Hub [data set],
https://www.radiant.earth/mlhub/ (last access: 11 January 2023), 2019. a 2. Aung, H. L., Uzkent, B., Burke, M., Lobell, D., and Ermon, S.: Farm parcel
delineation using spatio-temporal convolutional networks, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
76–77, 2020. a 3. Brems, E., Lissens, G., and Veroustraete, F.: MC-FUME: A new method for
compositing individual reflective channels, IEEE T. Geosci. Remote, 38, 553–569, https://doi.org/10.1109/36.823950, 2000. a 4. Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A
simple method for reconstructing a high-quality NDVI time-series data set
based on the Savitzky–Golay filter, Remote Sens. Environ., 91,
332–344, https://doi.org/10.1016/j.rse.2004.03.014, 2004. a 5. d'Andrimont, R., Claverie, M., Kempeneers, P., Muraro, D., Martinez Sanchez,
L., and Waldner, F.: AI4boundaries, http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9 [data set], 2022. a
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|