A new cropland area database by country circa 2020

Author:

Tubiello Francesco N.ORCID,Conchedda Giulia,Casse LeonORCID,Hao Pengyu,De Santis Giorgia,Chen Zhongxin

Abstract

Abstract. We describe a new dataset of cropland area circa the year 2020, with global coverage and with data for 221 countries and territories and 34 regional aggregates. Data are generated from geospatial information on the agreement–disagreement characteristics of six open-access high-resolution cropland maps derived from remote sensing. The cropland area mapping (CAM) aggregation dataset provides information on (i) mean cropland area and its uncertainty, (ii) cropland area by six distinct cropland agreement classes, and (iii) cropland area by specific combinations of underlying land cover product. The results indicated that world cropland area is 1500 ± 400 Mha (mean and 95 % confidence interval), with a relative uncertainty of 25 % that increased across regions. It was 50 % in Central Asia (40 ± 20 Mha), South America (180 ± 80 Mha), and Southern Europe (40 ± 20 Mha) and up to 40 % in Australia and New Zealand (50 ± 20 Mha), Southeastern Asia (80 ± 30 Mha), and Southern Africa (16 ± 6 Mha). Conversely, cropland area was estimated with better precision, i.e., smaller uncertainties in the range 10 %–25 % in Southern Asia (230 ± 30 Mha), Northern America (200 ± 40 Mha), Northern Africa (40 ± 10 Mha), and Eastern Europe and Western Europe (40 ± 10 Mha). The new data can be used to investigate the coherence of information across the six underlying products, as well as to explore important disagreement features. Overall, 70 % or more of the estimated mean cropland area globally and by region corresponded to good agreement of underlying land cover maps – four or more. Conversely, in Africa cropland area estimates found significant disagreement, highlighting mapping difficulties in complex landscapes. Finally, the new cropland area data were consistent with FAOSTAT (FAO, 2023) in 15 out of 18 world regions, as well as for 114 out of 182 countries with a cropland area above 10 kha. By helping to highlight features of cropland characteristics and underlying causes for agreement–disagreement across land cover products, the CAM aggregation dataset may be used as a reference for the quality of country statistics and may help guide future mapping efforts towards improved agricultural monitoring. Data are publicly available at https://doi.org/10.5281/zenodo.7987515 (Tubiello et al., 2023a).

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3