Thirty-meter map of young forest age in China

Author:

Xiao YuelongORCID,Wang Qunming,Tong Xiaohua,Atkinson Peter M.

Abstract

Abstract. Young forest age mapping at a fine spatial resolution is important for increasing the accuracy of estimating land–atmosphere carbon fluxes and guiding forest management practices. In recent decades, China has actively conducted afforestation and forest protection projects, thereby laying the foundation for the realization of carbon neutrality. However, very few studies have been conducted which map the ages of young forests for the whole of China at a fine spatial resolution. In this research, a continuous change detection and classification (CCDC)-based method suitable for large-scale forest age mapping is proposed and used to estimate young forest ages across China in 2020 at a spatial resolution of 30 m. First, a 10 m spatial-resolution land cover dataset (WorldCover2020) from the European Space Agency (ESA) was used to determine the forest cover areas in 2020. Then, the CCDC algorithm was used to identify stand-replacing disturbances to determine the stand age based on 436 967 Landsat tiles across China from 1990 to 2020. A validation sample set composed of multiple land use and land cover (LULC) products was used to calculate the overall accuracy (OA) of the 2020 young forest age (1–31-year) map of China, and the OA was 90.28 %. The reliability and applicability of the proposed CCDC-based forest age mapping method were validated by comparing the forest age map with Hansen's forest change dataset, Max Planck Institute for Biogeochemistry (MPI-BGC) 1 km global forest age datasets, and field measurements. The CCDC-based method has strong application potential in real-time mapping of the age of young forests at the global scale. The produced forest age map provides a basic dataset for research on the forest carbon cycle and forest ecosystem services as well as important guidance for government departments, such as the National Forestry and Grassland Administration and the National Development and Reform Commission in China. Data presented in this study is available at https://doi.org/10.6084/m9.figshare.21627023.v7 (Xiao, 2022).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3