Digital soil mapping of lithium in Australia

Author:

Ng WartiniORCID,Minasny Budiman,McBratney AlexORCID,de Caritat PatriceORCID,Wilford John

Abstract

Abstract. With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a digital soil mapping framework to combine data from recent geochemical surveys and environmental covariates that affect soil formation to predict and map aqua-regia-extractable Li content across the 7.6×106 km2 area of Australia. Catchment outlet sediment samples (i.e. soils formed on alluvial parent material) were collected by the National Geochemical Survey of Australia at 1315 sites, with both top (0–10 cm depth) and bottom (on average ∼60–80 cm depth) catchment outlet sediments sampled. We developed 50 bootstrap models using a cubist regression tree algorithm for each depth. The spatial prediction models were validated on an independent Northern Australia Geochemical Survey dataset, showing a good prediction with a root mean square error of 3.32 mg kg−1 (which is 44.2 % of the interquartile range) for the top depth. The model for the bottom depth has yet to be validated. The variables of importance for the models indicated that the first three Landsat 30+ Barest Earth bands (red, green, blue) and gamma radiometric dose have a strong impact on the development of regression-based Li prediction. The bootstrapped models were then used to generate digital soil Li prediction maps for both depths, which could identify and delineate areas with anomalously high Li concentrations in the regolith. The predicted maps show high Li concentration around existing mines and other potentially anomalous Li areas that have yet to be verified. The same mapping principles can potentially be applied to other elements. The Li geochemical data for calibration and validation are available from de Caritat and Cooper (2011b; https://doi.org/10.11636/Record.2011.020) and Main et al. (2019; https://doi.org/10.11636/Record.2019.002), respectively. The covariate data used for this study were sourced from the Terrestrial Ecosystem Research Network (TERN) infrastructure, which is enabled by the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS; https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/, last access: 6 December 2022; TERN, 2019). The final predictive map is available at https://doi.org/10.5281/zenodo.7895482 (Ng et al., 2023).

Funder

Australian Research Council

Australian Government

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3