Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data

Author:

Zhang Jianxin,Liu Kai,Wang Ming

Abstract

Abstract. A complete global flood event record would aid researchers to analyze the distribution of global floods and, thus, better formulate and manage disaster prevention and reduction policies. This study used Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and precipitation data combined with high-frequency filtering, anomaly detection and flood potential index methods to successfully extract historical flood days globally between 1 April 2002 and 31 August 2016; these results were then further compared and validated with Dartmouth Flood Observatory (DFO) data, Global Runoff Data Centre (GRDC) discharge data, news reports and social media data. The results showed that GRACE-based flood days could cover 81 % of the flood events in the DFO database, 87 % of flood events extracted by MODIS and supplement many additional flood events not recorded by the DFO. Moreover, the probability of detection greater than or equal to 0.5 reached 62 % among 261 river basins compared to flood events derived from the GRDC discharge data. These detection capabilities and detection results are both good. Finally, we provided flood day products with a 1∘ spatial resolution covering the range between 60∘ S and 60∘ N from 1 April 2002 to 31 August 2016; these products can be obtained from https://doi.org/10.5281/zenodo.6831384 (Zhang et al., 2022b). Thus, this research contributes a data foundation for the mechanistic analysis and attribution of global flood events.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Aggarwal, C. C.: Outlier ensembles: position paper, ACM SIGKDD Explorations Newsletter, 14, 49–58, 2013.

2. Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010.

3. Bergmann-Wolf, I., Forootan, E., Klemann, V., Kusche, J., and Dobslaw, H.: Updating ESA’s Earth System Model for Gravity Mission Simulation Studies: 3. A Realistically Perturbed Non-Tidal Atmosphere and Ocean De-Aliasing Model, Scientific Technical Report; 14/09, Potsdam,Deutsches GeoForschungsZentrum GFZ, 62 pp., https://doi.org/10.2312/GFZ.b103-14091, 2015.

4. Brakenridge, G. R.: Global Active Archive of Large Flood Events. Dartmouth Flood Observatory, University of Colorado, USA, http://floodobservatory.colorado.edu/Archives/, last access: 1 January 2022.

5. Cazenave, A. and Chen, J.: Time-variable gravity from space and present-day mass redistribution in theEarth system, Earth Planet. Sc. Lett., 298, 263–274, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3