The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy

Author:

Peruccacci SilviaORCID,Gariano Stefano LuigiORCID,Melillo MassimoORCID,Solimano Monica,Guzzetti FaustoORCID,Brunetti Maria TeresaORCID

Abstract

Abstract. Italy is frequently hit and damaged by landslides, resulting in substantial and widespread disruptions. In particular, slope failures have a high impact on the population, communication infrastructure, and economic and productive sectors. The hazard posed by landslides requires adequate responses for landslide risk mitigation, with special attention to the risk to the population. In 2006 the Italian Department of Civil Protection, an office of the Prime Minister, commissioned the Research Institute for Geo-Hydrological Protection (Istituto di Ricerca per la Protezione Idrogeologica), a research institute of the Italian National Research Council, to carry out operational forecasting of rainfall-induced landslides. Collecting landslide information in a catalogue is a preliminary action toward landslide forecasting. The use of spatially and temporally inaccurate landslide catalogues results in uncertain and unreliable operational landslide forecasting. Consequently, accurate catalogues are needed to reduce the uncertainties, which are to some extent unavoidable. To this end, over the last 15 years many researchers have been involved in compiling a catalogue called ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue), which currently lists 6312 records with information on rainfall-induced landslides that occurred over the Italian territory between January 1996 and December 2021. Overall, more than one-third of the catalogue has very high geographic accuracy (less than 1 km2) and hourly temporal resolution. In contrast, less than 2 % of the catalogue has low and very low geographical accuracy and daily temporal resolution. This makes ITALICA the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. Without this high level of accuracy, the precipitation responsible for the initiation of landslides cannot be reliably reconstructed, thus making the prediction of landslide occurrence ineffective. ITALICA can be accessed at https://doi.org/10.5281/zenodo.8009366 (Brunetti et al., 2023). ITALICA's information on rainfall-induced landslides in Italy places a special emphasis on their spatial and temporal locations, making the catalogue especially suitable for defining the rainfall conditions capable of triggering future landslides in the Italian territory. This information is fundamental for decision-making in landslide risk management.

Funder

Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri

Regione Liguria

Regione Autonoma della Sardegna

Regione Puglia

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Andres, N. and Badoux, A.: The Swiss flood and landslide damage database: Normalisation and trends, J. Flood Risk Manag., 12, e12510, https://doi.org/10.1111/jfr3.12510, 2019.

2. Belair, G. M., Jones, E. S., Slaughter, S. L., and Mirus, B. B.: Landslide Inventories across the United States version 2, Geological Survey data release, https://doi.org/10.5066/P9FZUX6N, 2022.

3. Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res.-Earth, 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.

4. Bianchi, C. and Salvati, P.: Rapporto Periodico sul Rischio posto alla Popolazione italiana da Frane e Inondazioni. Anno 2022, Istituto di Ricerca per la Protezione Idrogeologica (IRPI), Consiglio Nazionale delle Ricerche (CNR), https://doi.org/10.30437/REPORT2021, 2023 (in Italian).

5. Bíl, M., Raška, P., Dolák, L., and Kubeček, J.: CHILDA – Czech Historical Landslide Database, Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, 2021.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3