NH-SWE: Northern Hemisphere Snow Water Equivalent dataset based on in situ snow depth time series
-
Published:2023-06-23
Issue:6
Volume:15
Page:2577-2599
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Fontrodona-Bach AdriàORCID, Schaefli BettinaORCID, Woods RossORCID, Teuling Adriaan J.ORCID, Larsen Joshua R.ORCID
Abstract
Abstract. Ground-based datasets of observed snow water equivalent (SWE) are scarce, while gridded SWE estimates from remote-sensing and climate reanalysis are unable to resolve the high spatial variability of snow on the ground.
Long-term ground observations of snow depth, in combination with models that can accurately convert snow depth to SWE, can fill this observational gap. Here, we provide a new SWE dataset (NH-SWE) that encompasses 11 071 stations in the Northern Hemisphere (NH) and is available at https://doi.org/10.5281/zenodo.7515603 (Fontrodona-Bach et al., 2023). This new dataset provides daily time series of SWE, varying in length between 1 and 73 years, spanning the period 1950–2022, and covering a wide range of snow climates including many mountainous regions. At each station, observed snow depth was converted to SWE using an established snow-depth-to-SWE conversion model, with excellent model performance using regionalised parameters based on climate variables. The accuracy of the model after parameter regionalisation is comparable to that of the calibrated model.
The key advantages and strengths of the regionalised model presented here are its transferability across climates and the high performance in modelling daily SWE dynamics in terms of peak SWE, total snowmelt and duration of the melt season, as assessed here against a comparison model.
This dataset is particularly useful for studies that require accurate time series of SWE dynamics, timing of snowmelt onset, and snowmelt totals and duration. It can, for example, be used for climate change impact analyses, water resources assessment and management, validation of remote sensing of snow, hydrological modelling, and snow data assimilation into climate models.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A
processing–modeling routine to use SNOTEL hourly data in snowpack dynamic
models, Adv. Water Resour., 73, 16–29, 2014. a 2. Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a 3. Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and
temporal variability in seasonal snow density, J. Hydrol., 484,
63–73, 2013. a, b, c 4. Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating
snow-cover trends from space, Nat. Clim. Change, 8, 924–928, 2018. a 5. Broxton, P. D., Zeng, X., and Dawson, N.: Why do global reanalyses and land
data assimilation products underestimate snow water equivalent?, J. Hydrometeorol., 17, 2743–2761, 2016. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|