Past and future sea-level change from the surface mass balance of glaciers
-
Published:2012-11-12
Issue:6
Volume:6
Page:1295-1322
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Marzeion B.,Jarosch A. H.,Hofer M.
Abstract
Abstract. We present estimates of sea-level change caused by the global surface mass balance of glaciers, based on the reconstruction and projection of the surface mass balance of all the individual glaciers of the world, excluding the ice sheets in Greenland and Antarctica. The model is validated using a leave-one-glacier-out cross-validation scheme against 3997 observed surface mass balances of 255 glaciers, and against 756 geodetically observed, temporally integrated volume and surface area changes of 341 glaciers. When forced with observed monthly precipitation and temperature data, the glaciers of the world are reconstructed to have lost mass corresponding to 114 ± 5 mm sea-level equivalent (SLE) between 1902 and 2009. Using projected temperature and precipitation anomalies from 15 coupled general circulation models from the Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble, they are projected to lose an additional 148 ± 35 mm SLE (scenario RCP26), 166 ± 42 mm SLE (scenario RCP45), 175 ± 40 mm SLE (scenario RCP60), or 217 ± 47 mm SLE (scenario RCP85) during the 21st century. Based on the extended RCP scenarios, glaciers are projected to approach a new equilibrium towards the end of the 23rd century, after having lost either 248 ± 66 mm SLE (scenario RCP26), 313 ± 50 mm SLE (scenario RCP45), or 424 ± 46 mm SLE (scenario RCP85). Up until approximately 2100, ensemble uncertainty within each scenario is the biggest source of uncertainty for the future glacier mass loss; after that, the difference between the scenarios takes over as the biggest source of uncertainty. Ice mass loss rates are projected to peak 2040 ∼ 2050 (RCP26), 2050 ∼ 2060 (RCP45), 2070 ∼ 2090 (RCP60), or 2070 ∼ 2100 (RCP85).
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference56 articles.
1. Arendt, A., Bolch, T., Cogley, G., Gardner, A., Hagen, J. O., Hock, R., Kaser, G., Paul, F., Radic, V., Bliss, A., Fountain, A., Mercer, A., Negrete, A., Giffen, B., Menounos, B., Kienholz, C., Mayer, C., Nuth, C., Burgess, D., Hall, D., Kriegel, D., Berthier, E., Burgess, E., Cawkwell, F., Wyatt, F., Hartmann, G., Wolken, G., Frey, H., Brown, I., Howat, I., Lund, J., Rich, J., Filbert, K., Andreassen, L., Copland, L., Beedle, M., Koenig, M., Sharp, M., Moelg, N., Sigurdsson, O., Rastner, P., Forester, R., LeBris, R., Pettersson, R., Wheate, R., Herreid, S., Vorogushin, S., Winsvold, S., Chinn, T., Hagg, W., and Manley, W.: Randolph Glacier Inventory 1.0: a Dataset of Global Glacier Outlines, Global Land Ice Measurements from Space, Boulder Colorado, USA Digital Media, 2012. 2. Bahr, D.: Global distributions of glacier properties: a stochastic scaling paradigm, Water Resour. Res., 33, 1669–1679, 1997. 3. Bahr, D. B., Meier, M., and Peckham, S.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 355–362, 1997. 4. Bahr, D. B., Dyurgerov, M., and Meier, M. F.: Sea-level rise from glaciers and ice caps: a lower bound, Geophys. Res. Lett., 36, L03501, https://doi.org/10.1029/2008GL036309, 2009. 5. Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., Larsen, N. K., and Funder, S.: An aerial view of 80 years of climate-related glacier fluctuations in Southeast {G}reenland, Nat. Geosci., https://doi.org/10.1038/ngeo1481, in press, 2012.
Cited by
422 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|