Seasonality, drivers, and isotopic composition of soil CO<sub>2</sub> fluxes from tropical forests of the Congo Basin

Author:

Baumgartner Simon,Barthel Matti,Drake Travis W.,Bauters Marijn,Makelele Isaac Ahanamungu,Mugula John Kalume,Summerauer Laura,Gallarotti Nora,Ntaboba Landry Cizungu,Van Oost Kristof,Boeckx Pascal,Doetterl SebastianORCID,Werner Roland A.ORCID,Six Johan

Abstract

Abstract. Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. To address the enormous lack of quantification and understanding of seasonality in soil respiration of tropical forests in the Congo Basin, soil CO2 fluxes and potential controlling factors were measured for the first time annually in two dominant forest types (lowland and montane) of the Congo Basin during three years at varying temporal resolution. Soil CO2 fluxes from the Congo Basin resulted in 3.69 ± 1.22 and 3.82 ± 1.15 µmol CO2 m−2 s−1 for lowland and montane forests, respectively. Respiration in montane forest soils showed a clear seasonality with decreasing flux rates during the dry season. Montane forest soil CO2 fluxes were positively correlated with soil moisture while CO2 fluxes in the lowland forest were not. Paired ẟ13C values of soil organic carbon (SOC) and soil CO2 indicated that SOC in lowland forests is more decomposed than in montane forests, suggesting that respiration is controlled by C availability rather than environmental factors. In general, C in montane forests was more enriched in 13C throughout the whole cascade of carbon intake via photosynthesis, litterfall, SOC, and soil CO2 compared to lowland forests, pointing to a more open system. Even though soil CO2 fluxes are similarly high in lowland and montane forests of the Congo Basin, the drivers of them were different, i.e. soil moisture for montane forest and C availability for lowland forest.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3