Impacts of volatilisation on light scattering and filter-based absorption measurements: a case study

Author:

Backman J.,Virkkula A.,Petäjä T.,Aurela M.,Frey A.,Hillamo R.

Abstract

Abstract. Aerosol light absorption measurements most commonly rely on filter-based techniques. These methods are influenced by light scattering constituents in the aerosol phase deposited on the filters. The coating of soot by non-absorbing constituents changes the mixing state of soot as the aerosol ages and increase light absorption by the aerosol. Most light scattering constituents in a sub-micron aerosol are volatile by their nature due to their chemical composition and can be volatilized by heating the sample air. The initial mixing state is lost but the remaining light absorption by the aerosol should be by non-coated soot alone. This was studied during a short field campaign with two groups of equipment measuring in parallel for six days in April 2009 at the SMEAR III station in Helsinki. When heated, the light scattering constituents were evaporated thus reducing the single-scattering albedo (ω0) of the aerosol by as much as 0.4. An oven was set to scan different temperatures which revealed the volatility of the urban aerosol at different temperatures as well as the single-scattering albedo's dependence on the non-volatile volume fraction remaining (NVFR). The NVFR was 0.72 ± 0.13, 0.42 ± 0.06 and 0.22 ± 0.05 at 50, 150 and 280 °C respectively. ω0 behaved analogically, it was 0.71 ± 0.05, 0.62 ± 0.06 and 0.42 ± 0.07 at the respective temperatures. We found that absorption coefficients measured at different temperatures showed a temperature dependency possibly indicating initially different mixing states of the non-volatile constituents. By heating the aerosol the mode of the size distribution gets shifted to smaller sizes which in turn changes the filter-based instrument's response due increased penetration depth into the filter by the smaller residual particles. This was compensated for by using size distribution data.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3