A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin

Author:

Christensen N.,Lettenmaier D. P.

Abstract

Abstract. Implications of 21st century climate change on the hydrology and water resources of the Colorado River basin were assessed using a multimodel ensemble approach in which downscaled and bias corrected output from 11 General Circulation Models (GCMs) was used to drive macroscale hydrology and water resources models. Downscaled climate scenarios (ensembles) were used as forcings to the Variable Infiltration Capacity (VIC) macroscale hydrology model, which in turn forced the Colorado River Reservoir Model (CRMM). Ensembles of downscaled precipitation and temperature, and derived streamflows and reservoir system performance were assessed through comparison with current climate simulations for the 1950–1999 historical period. For each of the 11 GCMs, two emissions scenarios (IPCC SRES A2 and B1, corresponding to relatively unconstrained growth in emissions, and elimination of global emissions increases by 2100) were represented. Results for the A2 and B1 climate scenarios were divided into period 1 (2010–2039), period 2 (2040–2069), and period 3 (2070–2099). The mean temperature change averaged over the 11 ensembles for the Colorado basin for the A2 emission scenario ranged from 1.2 to 4.4°C for periods 1–3, and for the B1 scenario from 1.3 to 2.7°C. Precipitation changes were modest, with ensemble mean changes ranging from −1 to −2 percent for the A2 scenario, and from +1 to −1 percent for the B1 scenario. An analysis of seasonal precipitation patterns showed that most GCMs had modest reductions in summer precipitation and increases in winter precipitation. Derived 1 April snow water equivalent declined for all ensemble members and time periods, with maximum (ensemble mean) reductions of 38 percent for the A2 scenario in period 3. Runoff changes were mostly the result of a dominance of increased evapotranspiration over the seasonal precipitation shifts, with ensemble mean runoff reductions of −1, −6, and −11 percent for the A2 ensembles, and 0, −7, and −8 percent for the B1 ensembles. These hydrological changes were reflected in reservoir system performance. Average total basin reservoir storage generally declined, however there was a large range across the ensembles. Releases from Glen Canyon Dam to the Lower Basin (mandated by the Colorado River Compact) were reduced for all periods and both emissions scenarios in the ensemble mean. The fraction of years in which shortages occurred increased by approximately 20% by period 3 in for both emissions scenarios, and the average shortage increased to a maximum of 3.7 BCM/yr for the period 3 A2 ensemble average. Hydropower output was reduced in the ensemble mean for all time periods and both emissions scenarios.

Publisher

Copernicus GmbH

Reference36 articles.

1. Brown, R. D.: Northern hemisphere snow cover variability and change, 1915–97, J. Climate, 13, 2339–2355, 2000.

2. Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and R. N. Palmer: Effects of climate change on the hydrology and water resources of the Colorado River Basin, Climatic Change, 62, 337–363, 2004.

3. Delworth, T. L., Broccoli, A. J., Rosati, A., et al.: GFDL s CM2 global coupled climate models Part 1: Formulation and simulation characteristics, J. Climate, 643–674, 2005.

4. Diansky, N. A. and Volodin, E. M.: Simulation of present-day climate with a coupled Atmosphere-ocean general circulation model, Izv. Atmos. Ocean. Phys, (Engl. Transl.) 38, 732–747, 2002.

5. Gleick, P. H.: Regional hydrologic consequences of increases in atmospheric carbon dioxide and other trace gases, Climatic Change, 10 137–10 161, 1987.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3