Influence of rainfall observation network on model calibration and application

Author:

Bárdossy A.,Das T.

Abstract

Abstract. The objective in this study is to investigate the influence of the spatial resolution of the rainfall input on the model calibration and application. The analysis is carried out by varying the distribution of the raingauge network. The semi-distributed HBV model is calibrated with the precipitation interpolated from the available observed rainfall of the different raingauge networks. An automatic calibration method based on the combinatorial optimization algorithm simulated annealing is applied. Aggregated Nash-Sutcliffe coefficients at different temporal scales are adopted as objective function to estimate the model parameters. The performance of the hydrological model is analyzed as a function of the raingauge density. The calibrated model is validated using the same precipitation used for the calibration as well as interpolated precipitation based on networks of reduced and increased raingauge density. The effect of missing rainfall data is investigated by using a multiple linear regression approach for filling the missing values. The model, calibrated with the complete set of observed data, is then run in the validation period using the above described precipitation field. The simulated hydrographs obtained in the three sets of experiments are analyzed through the comparisons of the computed Nash-Sutcliffe coefficient and several goodness-of-fit indexes. The results show that the model using different raingauge networks might need recalibration of the model parameters: model calibrated on sparse information might perform well on dense information while model calibrated on dense information fails on sparse information. Also, the model calibrated with complete set of observed precipitation and run with incomplete observed data associated with the data estimated using multiple linear regressions, at the locations treated as missing measurements, performs well. A meso-scale catchment located in the south-west of Germany has been selected for this study.

Publisher

Copernicus GmbH

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3