Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS
Author:
Erickson M. H.,Gueneron M.,Jobson B. T.
Abstract
Abstract. A method using thermal desorption sampling and analysis by PTR-MS to measure long chain alkanes (C12-C18) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against light alkanes and alkenes which are a major constituent of both exhausts, allowing for quantification of higher molecular weight alkanes from the abundance of CnH2n+1 fragment ions. Using this approach, the molar abundance of C12-C18 alkanes in diesel engine exhaust was found to be 75% that of the total C1-C4 alkylbenzene abundance. While the PTR-MS mass spectra of gasoline and diesel exhaust looked similar, the abundance of higher molecular weight compounds relative to that of C4-alkylbenzenes was much greater in diesel engine exhaust. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions of larger organic compounds to urban air concentrations.
Publisher
Copernicus GmbH
Reference47 articles.
1. Arnold, S. T., Viggiano, A. A., and Morris, R. A.: Rate constants and product branching fractions for the reactions of H3O+ and NO+ with C2-C12 alkanes, J. Phys. Chem. A, 102, 8881–8887, 1998. 2. Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Warneke, C., Trainer, M., Brock, C. A., Stark, H., Brown, S. S., Dube, W. P., Gilman, J. B., Hall, K., Holloway, J. S., Kuster, W. C., Perring, A. E., Prevot, A. S. H., Schwarz, J. P., Spackman, J. R., Szidat, S., Wagner, N. L., Weber, R. J., Zotter, P., and Parrish, D. D.: Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass, Geophys. Res. Lett., 39, L06805, https://doi.org/10.1029/2011GL050718, 2012. 3. Bohme, D. K., Mackay, G. I., and Tanner, S. D.: An experimental study of the gas-phase kinetics of reactions with hydrated H3O+ ions (n = 1–3) at 298 K, J. Am. Chem. Soc., 101, 3724–3730, 1979. 4. Dallman, T. R. and Harley, R. A.: Evaluation of mobile source emission trends in the United States, J. Geophys. Res., 115, D14306, https://doi.org/10.1029/2010JD013862, 2010. 5. Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D., Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City, Atmos. Chem. Phys., 9, 5681–5709, https://doi.org/10.5194/acp-9-5681-2009, 2009.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|