Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)

Author:

Poelman Dieter R.,Schulz Wolfgang

Abstract

Abstract. The Lightning Imaging Sensor (LIS) on the International Space Station (ISS), hereafter referred to as ISS-LIS, detects lightning from space by capturing the optical scattered light emitted from the top of the clouds. The ground-based European Cooperation for Lightning Detection (EUCLID) makes use of the low-frequency electromagnetic signals generated by lightning discharges to locate them accordingly. The objective of this work is to quantify the similarities and contrasts between these two distinct lightning detection technologies by comparing the EUCLID cloud-to-ground strokes and intracloud pulses to the ISS-LIS groups in addition to the correlation at the flash level. The analysis is based on the observations made between 1 March 2017 and 31 March 2019 within the EUCLID network and limited to 54∘ north. A Bayesian approach is adopted to determine the relative and absolute detection efficiencies (DEs) of each system. It is found that the EUCLID relative and absolute flash DE improves by approximately 10 % towards the center of the EUCLID network up to a value of 56.3 % and 69.0 %, respectively, compared to the averaged value over the full domain, inherent to the network geometry and sensor technology. In contrast, the relative and absolute ISS-LIS flash DE over the full domain is 48.4 % and 71.3 %, respectively, and is somewhat higher than the values obtained in the center of the EUCLID network. The behavior of the relative DE of each system in terms of the flash characteristics of the other reveals that the greater the value, the more likely the other system will detect the flash. For instance, when the ISS-LIS flash duration is smaller than or equal to 200 ms, the EUCLID relative flash DE drops below 50 %, whereas it increases up to 80 % for ISS-LIS flashes with a duration longer than 750 ms. Finally, the distribution of the diurnal DE indicates a higher DE for the ISS-LIS and a lower DE for EUCLID at night.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3